Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

The particular integral of differential equation $ f\left( D \right)y = {e^{ax}} $ where $ f\left( D \right) = \left( {D - a} \right)g\left( D \right),g\left( a \right) \ne 0 $ is:
\[
  A.{\text{ }}m{e^{ax}} \\
  B.{\text{ }}\dfrac{{{e^{ax}}}}{{g\left( a \right)}} \\
  C.{\text{ }}g\left( a \right){e^{ax}} \\
  D.{\text{ }}\dfrac{{x{e^{ax}}}}{{g\left( a \right)}} \\
 \]


Answer
VerifiedVerified
592.8k+ views
Hint: In order to solve the problem, first differentiate the given function partially or part by part. Further we will check the relation between $ f\left( a \right) $ and $ f'\left( a \right) $ and on the basis of their values we will use the formula of particular integral by substituting the constant term in the same function, by replacing d with constant a.

Complete step-by-step answer:
Given equation is $ f\left( D \right)y = {e^{ax}} $ ---- (1)
Where $ f\left( D \right) = \left( {D - a} \right)g\left( D \right),g\left( a \right) \ne 0 $ ---- (2)
First let us find out $ f\left( a \right) $ by using equation (2) substituting “a” in place of D.
 $
  \because f\left( D \right) = \left( {D - a} \right)g\left( D \right) \\
   \Rightarrow f\left( a \right) = \left( {a - a} \right)g\left( D \right) \\
   \Rightarrow f\left( a \right) = \left( 0 \right)g\left( D \right) \\
   \Rightarrow f\left( a \right) = 0 \\
  $
Now let us first differentiate equation (2) in order to find $ f'\left( a \right) $
 $ \Rightarrow f'\left( D \right) = g\left( D \right) + \left( {D - a} \right)g'\left( D \right) $ --- (3)
First let us find out $ f'\left( a \right) $ by using equation (3) substituting “a” in place of D
 $
  \because f'\left( D \right) = g\left( D \right) + \left( {D - a} \right)g'\left( D \right) \\
   \Rightarrow f'\left( a \right) = g\left( a \right) + \left( {a - a} \right)g'\left( a \right) \\
   \Rightarrow f'\left( a \right) = g\left( a \right) + \left( 0 \right)g'\left( a \right) \\
   \Rightarrow f'\left( a \right) = g\left( a \right) + 0 \\
   \Rightarrow f'\left( a \right) = g\left( a \right) \\
  $
From the above two result we have seen that $ f\left( a \right) = 0\& f'\left( a \right) \ne 0 $
So for particular integral we first differentiate equation (1) with respect to “a” and then find the ratio with $ f'\left( a \right) $
Differentiating equation (1) we get:
 $
   = \dfrac{d}{{da}}\left[ {{e^{ax}}} \right] \\
   = x{e^{ax}}.........{\text{(4) }}\left[ {\because \dfrac{d}{{dt}}\left[ {{e^{\alpha t}}} \right] = \alpha {e^{at}}} \right] \\
  $
Also
 $ f'\left( a \right) = g\left( a \right) $
So, let us use the formula for a particular integral.
The particular integral is:
 $
   = \dfrac{{x{e^{ax}}}}{{f'\left( a \right)}} \\
   = \dfrac{{x{e^{ax}}}}{{g\left( a \right)}} \\
  $
Hence, the particular integral is $ \dfrac{{x{e^{ax}}}}{{g\left( a \right)}} $
So, option D is the correct option.


Note- A general solution of an nth-order equation is a solution containing n arbitrary independent constants of integration. A particular solution is derived from the general solution by setting the constants to particular values, often chosen to fulfill set 'initial conditions or boundary conditions'. Particular integral is a part of the solution of the differential equation.