
The particular integral of differential equation $ f\left( D \right)y = {e^{ax}} $ where $ f\left( D \right) = \left( {D - a} \right)g\left( D \right),g\left( a \right) \ne 0 $ is:
\[
A.{\text{ }}m{e^{ax}} \\
B.{\text{ }}\dfrac{{{e^{ax}}}}{{g\left( a \right)}} \\
C.{\text{ }}g\left( a \right){e^{ax}} \\
D.{\text{ }}\dfrac{{x{e^{ax}}}}{{g\left( a \right)}} \\
\]
Answer
592.8k+ views
Hint: In order to solve the problem, first differentiate the given function partially or part by part. Further we will check the relation between $ f\left( a \right) $ and $ f'\left( a \right) $ and on the basis of their values we will use the formula of particular integral by substituting the constant term in the same function, by replacing d with constant a.
Complete step-by-step answer:
Given equation is $ f\left( D \right)y = {e^{ax}} $ ---- (1)
Where $ f\left( D \right) = \left( {D - a} \right)g\left( D \right),g\left( a \right) \ne 0 $ ---- (2)
First let us find out $ f\left( a \right) $ by using equation (2) substituting “a” in place of D.
$
\because f\left( D \right) = \left( {D - a} \right)g\left( D \right) \\
\Rightarrow f\left( a \right) = \left( {a - a} \right)g\left( D \right) \\
\Rightarrow f\left( a \right) = \left( 0 \right)g\left( D \right) \\
\Rightarrow f\left( a \right) = 0 \\
$
Now let us first differentiate equation (2) in order to find $ f'\left( a \right) $
$ \Rightarrow f'\left( D \right) = g\left( D \right) + \left( {D - a} \right)g'\left( D \right) $ --- (3)
First let us find out $ f'\left( a \right) $ by using equation (3) substituting “a” in place of D
$
\because f'\left( D \right) = g\left( D \right) + \left( {D - a} \right)g'\left( D \right) \\
\Rightarrow f'\left( a \right) = g\left( a \right) + \left( {a - a} \right)g'\left( a \right) \\
\Rightarrow f'\left( a \right) = g\left( a \right) + \left( 0 \right)g'\left( a \right) \\
\Rightarrow f'\left( a \right) = g\left( a \right) + 0 \\
\Rightarrow f'\left( a \right) = g\left( a \right) \\
$
From the above two result we have seen that $ f\left( a \right) = 0\& f'\left( a \right) \ne 0 $
So for particular integral we first differentiate equation (1) with respect to “a” and then find the ratio with $ f'\left( a \right) $
Differentiating equation (1) we get:
$
= \dfrac{d}{{da}}\left[ {{e^{ax}}} \right] \\
= x{e^{ax}}.........{\text{(4) }}\left[ {\because \dfrac{d}{{dt}}\left[ {{e^{\alpha t}}} \right] = \alpha {e^{at}}} \right] \\
$
Also
$ f'\left( a \right) = g\left( a \right) $
So, let us use the formula for a particular integral.
The particular integral is:
$
= \dfrac{{x{e^{ax}}}}{{f'\left( a \right)}} \\
= \dfrac{{x{e^{ax}}}}{{g\left( a \right)}} \\
$
Hence, the particular integral is $ \dfrac{{x{e^{ax}}}}{{g\left( a \right)}} $
So, option D is the correct option.
Note- A general solution of an nth-order equation is a solution containing n arbitrary independent constants of integration. A particular solution is derived from the general solution by setting the constants to particular values, often chosen to fulfill set 'initial conditions or boundary conditions'. Particular integral is a part of the solution of the differential equation.
Complete step-by-step answer:
Given equation is $ f\left( D \right)y = {e^{ax}} $ ---- (1)
Where $ f\left( D \right) = \left( {D - a} \right)g\left( D \right),g\left( a \right) \ne 0 $ ---- (2)
First let us find out $ f\left( a \right) $ by using equation (2) substituting “a” in place of D.
$
\because f\left( D \right) = \left( {D - a} \right)g\left( D \right) \\
\Rightarrow f\left( a \right) = \left( {a - a} \right)g\left( D \right) \\
\Rightarrow f\left( a \right) = \left( 0 \right)g\left( D \right) \\
\Rightarrow f\left( a \right) = 0 \\
$
Now let us first differentiate equation (2) in order to find $ f'\left( a \right) $
$ \Rightarrow f'\left( D \right) = g\left( D \right) + \left( {D - a} \right)g'\left( D \right) $ --- (3)
First let us find out $ f'\left( a \right) $ by using equation (3) substituting “a” in place of D
$
\because f'\left( D \right) = g\left( D \right) + \left( {D - a} \right)g'\left( D \right) \\
\Rightarrow f'\left( a \right) = g\left( a \right) + \left( {a - a} \right)g'\left( a \right) \\
\Rightarrow f'\left( a \right) = g\left( a \right) + \left( 0 \right)g'\left( a \right) \\
\Rightarrow f'\left( a \right) = g\left( a \right) + 0 \\
\Rightarrow f'\left( a \right) = g\left( a \right) \\
$
From the above two result we have seen that $ f\left( a \right) = 0\& f'\left( a \right) \ne 0 $
So for particular integral we first differentiate equation (1) with respect to “a” and then find the ratio with $ f'\left( a \right) $
Differentiating equation (1) we get:
$
= \dfrac{d}{{da}}\left[ {{e^{ax}}} \right] \\
= x{e^{ax}}.........{\text{(4) }}\left[ {\because \dfrac{d}{{dt}}\left[ {{e^{\alpha t}}} \right] = \alpha {e^{at}}} \right] \\
$
Also
$ f'\left( a \right) = g\left( a \right) $
So, let us use the formula for a particular integral.
The particular integral is:
$
= \dfrac{{x{e^{ax}}}}{{f'\left( a \right)}} \\
= \dfrac{{x{e^{ax}}}}{{g\left( a \right)}} \\
$
Hence, the particular integral is $ \dfrac{{x{e^{ax}}}}{{g\left( a \right)}} $
So, option D is the correct option.
Note- A general solution of an nth-order equation is a solution containing n arbitrary independent constants of integration. A particular solution is derived from the general solution by setting the constants to particular values, often chosen to fulfill set 'initial conditions or boundary conditions'. Particular integral is a part of the solution of the differential equation.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

