
The pair of equations \[{{\text{3}}^{{\text{x + y}}}}{\text{ = 81}}\], \[{\text{8}}{{\text{1}}^{{\text{x - y}}}}{\text{ = 3}}\]has
a. no solution
b. the solution \[x = 2\dfrac{1}{2}\],\[y = 2\dfrac{1}{2}\]
c. the solution \[x = 2\],\[y = 2\]
d. the solution \[x = 2\dfrac{1}{8},y = 1\dfrac{7}{8}\]
Answer
511.8k+ views
Hint: Since the given equation is in exponents, therefore, we’ll we simplify in such a way that the base of the left-hand side will be equal to the right-hand side. Then on equating the exponents we’ll get a pair linear equations in x and y. Then we solve those linear equations using the substitution method and will get the required answer.
Complete step by step Answer:
From the first equation, \[{{\text{3}}^{{\text{x + y}}}}{\text{ = 81}}\], we get,
\[ \Rightarrow {{\text{3}}^{{\text{x + y}}}}{\text{ = }}{{\text{3}}^{\text{4}}}\]
Now, we will use the fact that if \[{{\text{a}}^{\text{x}}}{\text{ = }}{{\text{a}}^{\text{y}}}\], then \[{\text{x = y}}\]
So we have, \[{\text{x + y = 4}}\]….(1)
From the second equation,
\[
{\text{8}}{{\text{1}}^{{\text{x - y}}}}{\text{ = 3}} \\
\Rightarrow {{\text{3}}^{{\text{4(x - y)}}}}{\text{ = 3}} \\
\]
Now, we will use the fact that if \[{{\text{a}}^{\text{x}}}{\text{ = }}{{\text{a}}^{\text{y}}}\], then \[{\text{x = y}}\]
\[ \Rightarrow {\text{4(x - y) = 1}}\]
\[ \Rightarrow {\text{x - y = 0}}{\text{.25}}\]…….(2)
Now we have, \[{\text{x - y = 0}}{\text{.25}}\], \[{\text{x + y = 4}}\]
Taking \[{\text{x + y = 4}}\],
\[ \Rightarrow {\text{x = 4 - y}}\] (3)
Now substituting the value of x in \[{\text{x - y = 0}}{\text{.25}}\], we get,
\[ \Rightarrow {\text{4 - y - y = 0}}{\text{.25}}\]
\[ \Rightarrow 4{\text{ - 2y = 0}}{\text{.25}}\]
\[ \Rightarrow 3.75 = 2{\text{y}}\]
\[ \Rightarrow {\text{y}} = 1.875\]
Converting into a mixed fraction we get,
\[ \Rightarrow {\text{y = 1}}\dfrac{{\text{7}}}{{\text{8}}}\]
And now, substituting the value of y in (3), we get,
\[ \Rightarrow {\text{x}} = 4 - 1.875\]
\[ \Rightarrow {\text{x = 2}}{\text{.125}}\]
Now converting into a mixed fraction we get,
\[ \Rightarrow x = 2\dfrac{1}{8}\]
So, we have our solution as, \[x = 2\dfrac{1}{8}\]and \[{\text{y = 1}}\dfrac{{\text{7}}}{{\text{8}}}\], which is an option (d)
Note: Here to solve the pair of linear equations in two variables we have used the substitution method, we can also use the elimination method or the cross multiplication method to solve for the variables.
\[ \Rightarrow {\text{x + y = 4}}..........{\text{(i)}}\]
\[ \Rightarrow {\text{x - y = 0}}{\text{.25}}..........{\text{(ii)}}\]
On adding both equations
\[ \Rightarrow 2{\text{x = 4 + 0}}{\text{.25}}\]
\[ \Rightarrow 2{\text{x = 4}}{\text{.25}}\]
\[ \Rightarrow {\text{x = 2}}{\text{.125}}\]
Now converting into a mixed fraction we get,
\[\therefore x = 2\dfrac{1}{8}\]
Substituting the value of x in equation(i)
\[ \Rightarrow {\text{2}}{\text{.125 + y = 4}}\]
\[ \Rightarrow {\text{y = 4 - 2}}{\text{.125}}\]
\[\therefore {\text{y = 1}}{\text{.875}}\]
So, we have our solution as, \[x = 2\dfrac{1}{8}\]and \[{\text{y = 1}}\dfrac{{\text{7}}}{{\text{8}}}\].
Complete step by step Answer:
From the first equation, \[{{\text{3}}^{{\text{x + y}}}}{\text{ = 81}}\], we get,
\[ \Rightarrow {{\text{3}}^{{\text{x + y}}}}{\text{ = }}{{\text{3}}^{\text{4}}}\]
Now, we will use the fact that if \[{{\text{a}}^{\text{x}}}{\text{ = }}{{\text{a}}^{\text{y}}}\], then \[{\text{x = y}}\]
So we have, \[{\text{x + y = 4}}\]….(1)
From the second equation,
\[
{\text{8}}{{\text{1}}^{{\text{x - y}}}}{\text{ = 3}} \\
\Rightarrow {{\text{3}}^{{\text{4(x - y)}}}}{\text{ = 3}} \\
\]
Now, we will use the fact that if \[{{\text{a}}^{\text{x}}}{\text{ = }}{{\text{a}}^{\text{y}}}\], then \[{\text{x = y}}\]
\[ \Rightarrow {\text{4(x - y) = 1}}\]
\[ \Rightarrow {\text{x - y = 0}}{\text{.25}}\]…….(2)
Now we have, \[{\text{x - y = 0}}{\text{.25}}\], \[{\text{x + y = 4}}\]
Taking \[{\text{x + y = 4}}\],
\[ \Rightarrow {\text{x = 4 - y}}\] (3)
Now substituting the value of x in \[{\text{x - y = 0}}{\text{.25}}\], we get,
\[ \Rightarrow {\text{4 - y - y = 0}}{\text{.25}}\]
\[ \Rightarrow 4{\text{ - 2y = 0}}{\text{.25}}\]
\[ \Rightarrow 3.75 = 2{\text{y}}\]
\[ \Rightarrow {\text{y}} = 1.875\]
Converting into a mixed fraction we get,
\[ \Rightarrow {\text{y = 1}}\dfrac{{\text{7}}}{{\text{8}}}\]
And now, substituting the value of y in (3), we get,
\[ \Rightarrow {\text{x}} = 4 - 1.875\]
\[ \Rightarrow {\text{x = 2}}{\text{.125}}\]
Now converting into a mixed fraction we get,
\[ \Rightarrow x = 2\dfrac{1}{8}\]
So, we have our solution as, \[x = 2\dfrac{1}{8}\]and \[{\text{y = 1}}\dfrac{{\text{7}}}{{\text{8}}}\], which is an option (d)
Note: Here to solve the pair of linear equations in two variables we have used the substitution method, we can also use the elimination method or the cross multiplication method to solve for the variables.
\[ \Rightarrow {\text{x + y = 4}}..........{\text{(i)}}\]
\[ \Rightarrow {\text{x - y = 0}}{\text{.25}}..........{\text{(ii)}}\]
On adding both equations
\[ \Rightarrow 2{\text{x = 4 + 0}}{\text{.25}}\]
\[ \Rightarrow 2{\text{x = 4}}{\text{.25}}\]
\[ \Rightarrow {\text{x = 2}}{\text{.125}}\]
Now converting into a mixed fraction we get,
\[\therefore x = 2\dfrac{1}{8}\]
Substituting the value of x in equation(i)
\[ \Rightarrow {\text{2}}{\text{.125 + y = 4}}\]
\[ \Rightarrow {\text{y = 4 - 2}}{\text{.125}}\]
\[\therefore {\text{y = 1}}{\text{.875}}\]
So, we have our solution as, \[x = 2\dfrac{1}{8}\]and \[{\text{y = 1}}\dfrac{{\text{7}}}{{\text{8}}}\].
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE

Give two reasons to justify a Water at room temperature class 11 chemistry CBSE
