
The pair of equations \[{{\text{3}}^{{\text{x + y}}}}{\text{ = 81}}\], \[{\text{8}}{{\text{1}}^{{\text{x - y}}}}{\text{ = 3}}\]has
a. no solution
b. the solution \[x = 2\dfrac{1}{2}\],\[y = 2\dfrac{1}{2}\]
c. the solution \[x = 2\],\[y = 2\]
d. the solution \[x = 2\dfrac{1}{8},y = 1\dfrac{7}{8}\]
Answer
591k+ views
Hint: Since the given equation is in exponents, therefore, we’ll we simplify in such a way that the base of the left-hand side will be equal to the right-hand side. Then on equating the exponents we’ll get a pair linear equations in x and y. Then we solve those linear equations using the substitution method and will get the required answer.
Complete step by step Answer:
From the first equation, \[{{\text{3}}^{{\text{x + y}}}}{\text{ = 81}}\], we get,
\[ \Rightarrow {{\text{3}}^{{\text{x + y}}}}{\text{ = }}{{\text{3}}^{\text{4}}}\]
Now, we will use the fact that if \[{{\text{a}}^{\text{x}}}{\text{ = }}{{\text{a}}^{\text{y}}}\], then \[{\text{x = y}}\]
So we have, \[{\text{x + y = 4}}\]….(1)
From the second equation,
\[
{\text{8}}{{\text{1}}^{{\text{x - y}}}}{\text{ = 3}} \\
\Rightarrow {{\text{3}}^{{\text{4(x - y)}}}}{\text{ = 3}} \\
\]
Now, we will use the fact that if \[{{\text{a}}^{\text{x}}}{\text{ = }}{{\text{a}}^{\text{y}}}\], then \[{\text{x = y}}\]
\[ \Rightarrow {\text{4(x - y) = 1}}\]
\[ \Rightarrow {\text{x - y = 0}}{\text{.25}}\]…….(2)
Now we have, \[{\text{x - y = 0}}{\text{.25}}\], \[{\text{x + y = 4}}\]
Taking \[{\text{x + y = 4}}\],
\[ \Rightarrow {\text{x = 4 - y}}\] (3)
Now substituting the value of x in \[{\text{x - y = 0}}{\text{.25}}\], we get,
\[ \Rightarrow {\text{4 - y - y = 0}}{\text{.25}}\]
\[ \Rightarrow 4{\text{ - 2y = 0}}{\text{.25}}\]
\[ \Rightarrow 3.75 = 2{\text{y}}\]
\[ \Rightarrow {\text{y}} = 1.875\]
Converting into a mixed fraction we get,
\[ \Rightarrow {\text{y = 1}}\dfrac{{\text{7}}}{{\text{8}}}\]
And now, substituting the value of y in (3), we get,
\[ \Rightarrow {\text{x}} = 4 - 1.875\]
\[ \Rightarrow {\text{x = 2}}{\text{.125}}\]
Now converting into a mixed fraction we get,
\[ \Rightarrow x = 2\dfrac{1}{8}\]
So, we have our solution as, \[x = 2\dfrac{1}{8}\]and \[{\text{y = 1}}\dfrac{{\text{7}}}{{\text{8}}}\], which is an option (d)
Note: Here to solve the pair of linear equations in two variables we have used the substitution method, we can also use the elimination method or the cross multiplication method to solve for the variables.
\[ \Rightarrow {\text{x + y = 4}}..........{\text{(i)}}\]
\[ \Rightarrow {\text{x - y = 0}}{\text{.25}}..........{\text{(ii)}}\]
On adding both equations
\[ \Rightarrow 2{\text{x = 4 + 0}}{\text{.25}}\]
\[ \Rightarrow 2{\text{x = 4}}{\text{.25}}\]
\[ \Rightarrow {\text{x = 2}}{\text{.125}}\]
Now converting into a mixed fraction we get,
\[\therefore x = 2\dfrac{1}{8}\]
Substituting the value of x in equation(i)
\[ \Rightarrow {\text{2}}{\text{.125 + y = 4}}\]
\[ \Rightarrow {\text{y = 4 - 2}}{\text{.125}}\]
\[\therefore {\text{y = 1}}{\text{.875}}\]
So, we have our solution as, \[x = 2\dfrac{1}{8}\]and \[{\text{y = 1}}\dfrac{{\text{7}}}{{\text{8}}}\].
Complete step by step Answer:
From the first equation, \[{{\text{3}}^{{\text{x + y}}}}{\text{ = 81}}\], we get,
\[ \Rightarrow {{\text{3}}^{{\text{x + y}}}}{\text{ = }}{{\text{3}}^{\text{4}}}\]
Now, we will use the fact that if \[{{\text{a}}^{\text{x}}}{\text{ = }}{{\text{a}}^{\text{y}}}\], then \[{\text{x = y}}\]
So we have, \[{\text{x + y = 4}}\]….(1)
From the second equation,
\[
{\text{8}}{{\text{1}}^{{\text{x - y}}}}{\text{ = 3}} \\
\Rightarrow {{\text{3}}^{{\text{4(x - y)}}}}{\text{ = 3}} \\
\]
Now, we will use the fact that if \[{{\text{a}}^{\text{x}}}{\text{ = }}{{\text{a}}^{\text{y}}}\], then \[{\text{x = y}}\]
\[ \Rightarrow {\text{4(x - y) = 1}}\]
\[ \Rightarrow {\text{x - y = 0}}{\text{.25}}\]…….(2)
Now we have, \[{\text{x - y = 0}}{\text{.25}}\], \[{\text{x + y = 4}}\]
Taking \[{\text{x + y = 4}}\],
\[ \Rightarrow {\text{x = 4 - y}}\] (3)
Now substituting the value of x in \[{\text{x - y = 0}}{\text{.25}}\], we get,
\[ \Rightarrow {\text{4 - y - y = 0}}{\text{.25}}\]
\[ \Rightarrow 4{\text{ - 2y = 0}}{\text{.25}}\]
\[ \Rightarrow 3.75 = 2{\text{y}}\]
\[ \Rightarrow {\text{y}} = 1.875\]
Converting into a mixed fraction we get,
\[ \Rightarrow {\text{y = 1}}\dfrac{{\text{7}}}{{\text{8}}}\]
And now, substituting the value of y in (3), we get,
\[ \Rightarrow {\text{x}} = 4 - 1.875\]
\[ \Rightarrow {\text{x = 2}}{\text{.125}}\]
Now converting into a mixed fraction we get,
\[ \Rightarrow x = 2\dfrac{1}{8}\]
So, we have our solution as, \[x = 2\dfrac{1}{8}\]and \[{\text{y = 1}}\dfrac{{\text{7}}}{{\text{8}}}\], which is an option (d)
Note: Here to solve the pair of linear equations in two variables we have used the substitution method, we can also use the elimination method or the cross multiplication method to solve for the variables.
\[ \Rightarrow {\text{x + y = 4}}..........{\text{(i)}}\]
\[ \Rightarrow {\text{x - y = 0}}{\text{.25}}..........{\text{(ii)}}\]
On adding both equations
\[ \Rightarrow 2{\text{x = 4 + 0}}{\text{.25}}\]
\[ \Rightarrow 2{\text{x = 4}}{\text{.25}}\]
\[ \Rightarrow {\text{x = 2}}{\text{.125}}\]
Now converting into a mixed fraction we get,
\[\therefore x = 2\dfrac{1}{8}\]
Substituting the value of x in equation(i)
\[ \Rightarrow {\text{2}}{\text{.125 + y = 4}}\]
\[ \Rightarrow {\text{y = 4 - 2}}{\text{.125}}\]
\[\therefore {\text{y = 1}}{\text{.875}}\]
So, we have our solution as, \[x = 2\dfrac{1}{8}\]and \[{\text{y = 1}}\dfrac{{\text{7}}}{{\text{8}}}\].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

