
The pair of equations \[{{\text{3}}^{{\text{x + y}}}}{\text{ = 81}}\], \[{\text{8}}{{\text{1}}^{{\text{x - y}}}}{\text{ = 3}}\]has
a. no solution
b. the solution \[x = 2\dfrac{1}{2}\],\[y = 2\dfrac{1}{2}\]
c. the solution \[x = 2\],\[y = 2\]
d. the solution \[x = 2\dfrac{1}{8},y = 1\dfrac{7}{8}\]
Answer
576.9k+ views
Hint: Since the given equation is in exponents, therefore, we’ll we simplify in such a way that the base of the left-hand side will be equal to the right-hand side. Then on equating the exponents we’ll get a pair linear equations in x and y. Then we solve those linear equations using the substitution method and will get the required answer.
Complete step by step Answer:
From the first equation, \[{{\text{3}}^{{\text{x + y}}}}{\text{ = 81}}\], we get,
\[ \Rightarrow {{\text{3}}^{{\text{x + y}}}}{\text{ = }}{{\text{3}}^{\text{4}}}\]
Now, we will use the fact that if \[{{\text{a}}^{\text{x}}}{\text{ = }}{{\text{a}}^{\text{y}}}\], then \[{\text{x = y}}\]
So we have, \[{\text{x + y = 4}}\]….(1)
From the second equation,
\[
{\text{8}}{{\text{1}}^{{\text{x - y}}}}{\text{ = 3}} \\
\Rightarrow {{\text{3}}^{{\text{4(x - y)}}}}{\text{ = 3}} \\
\]
Now, we will use the fact that if \[{{\text{a}}^{\text{x}}}{\text{ = }}{{\text{a}}^{\text{y}}}\], then \[{\text{x = y}}\]
\[ \Rightarrow {\text{4(x - y) = 1}}\]
\[ \Rightarrow {\text{x - y = 0}}{\text{.25}}\]…….(2)
Now we have, \[{\text{x - y = 0}}{\text{.25}}\], \[{\text{x + y = 4}}\]
Taking \[{\text{x + y = 4}}\],
\[ \Rightarrow {\text{x = 4 - y}}\] (3)
Now substituting the value of x in \[{\text{x - y = 0}}{\text{.25}}\], we get,
\[ \Rightarrow {\text{4 - y - y = 0}}{\text{.25}}\]
\[ \Rightarrow 4{\text{ - 2y = 0}}{\text{.25}}\]
\[ \Rightarrow 3.75 = 2{\text{y}}\]
\[ \Rightarrow {\text{y}} = 1.875\]
Converting into a mixed fraction we get,
\[ \Rightarrow {\text{y = 1}}\dfrac{{\text{7}}}{{\text{8}}}\]
And now, substituting the value of y in (3), we get,
\[ \Rightarrow {\text{x}} = 4 - 1.875\]
\[ \Rightarrow {\text{x = 2}}{\text{.125}}\]
Now converting into a mixed fraction we get,
\[ \Rightarrow x = 2\dfrac{1}{8}\]
So, we have our solution as, \[x = 2\dfrac{1}{8}\]and \[{\text{y = 1}}\dfrac{{\text{7}}}{{\text{8}}}\], which is an option (d)
Note: Here to solve the pair of linear equations in two variables we have used the substitution method, we can also use the elimination method or the cross multiplication method to solve for the variables.
\[ \Rightarrow {\text{x + y = 4}}..........{\text{(i)}}\]
\[ \Rightarrow {\text{x - y = 0}}{\text{.25}}..........{\text{(ii)}}\]
On adding both equations
\[ \Rightarrow 2{\text{x = 4 + 0}}{\text{.25}}\]
\[ \Rightarrow 2{\text{x = 4}}{\text{.25}}\]
\[ \Rightarrow {\text{x = 2}}{\text{.125}}\]
Now converting into a mixed fraction we get,
\[\therefore x = 2\dfrac{1}{8}\]
Substituting the value of x in equation(i)
\[ \Rightarrow {\text{2}}{\text{.125 + y = 4}}\]
\[ \Rightarrow {\text{y = 4 - 2}}{\text{.125}}\]
\[\therefore {\text{y = 1}}{\text{.875}}\]
So, we have our solution as, \[x = 2\dfrac{1}{8}\]and \[{\text{y = 1}}\dfrac{{\text{7}}}{{\text{8}}}\].
Complete step by step Answer:
From the first equation, \[{{\text{3}}^{{\text{x + y}}}}{\text{ = 81}}\], we get,
\[ \Rightarrow {{\text{3}}^{{\text{x + y}}}}{\text{ = }}{{\text{3}}^{\text{4}}}\]
Now, we will use the fact that if \[{{\text{a}}^{\text{x}}}{\text{ = }}{{\text{a}}^{\text{y}}}\], then \[{\text{x = y}}\]
So we have, \[{\text{x + y = 4}}\]….(1)
From the second equation,
\[
{\text{8}}{{\text{1}}^{{\text{x - y}}}}{\text{ = 3}} \\
\Rightarrow {{\text{3}}^{{\text{4(x - y)}}}}{\text{ = 3}} \\
\]
Now, we will use the fact that if \[{{\text{a}}^{\text{x}}}{\text{ = }}{{\text{a}}^{\text{y}}}\], then \[{\text{x = y}}\]
\[ \Rightarrow {\text{4(x - y) = 1}}\]
\[ \Rightarrow {\text{x - y = 0}}{\text{.25}}\]…….(2)
Now we have, \[{\text{x - y = 0}}{\text{.25}}\], \[{\text{x + y = 4}}\]
Taking \[{\text{x + y = 4}}\],
\[ \Rightarrow {\text{x = 4 - y}}\] (3)
Now substituting the value of x in \[{\text{x - y = 0}}{\text{.25}}\], we get,
\[ \Rightarrow {\text{4 - y - y = 0}}{\text{.25}}\]
\[ \Rightarrow 4{\text{ - 2y = 0}}{\text{.25}}\]
\[ \Rightarrow 3.75 = 2{\text{y}}\]
\[ \Rightarrow {\text{y}} = 1.875\]
Converting into a mixed fraction we get,
\[ \Rightarrow {\text{y = 1}}\dfrac{{\text{7}}}{{\text{8}}}\]
And now, substituting the value of y in (3), we get,
\[ \Rightarrow {\text{x}} = 4 - 1.875\]
\[ \Rightarrow {\text{x = 2}}{\text{.125}}\]
Now converting into a mixed fraction we get,
\[ \Rightarrow x = 2\dfrac{1}{8}\]
So, we have our solution as, \[x = 2\dfrac{1}{8}\]and \[{\text{y = 1}}\dfrac{{\text{7}}}{{\text{8}}}\], which is an option (d)
Note: Here to solve the pair of linear equations in two variables we have used the substitution method, we can also use the elimination method or the cross multiplication method to solve for the variables.
\[ \Rightarrow {\text{x + y = 4}}..........{\text{(i)}}\]
\[ \Rightarrow {\text{x - y = 0}}{\text{.25}}..........{\text{(ii)}}\]
On adding both equations
\[ \Rightarrow 2{\text{x = 4 + 0}}{\text{.25}}\]
\[ \Rightarrow 2{\text{x = 4}}{\text{.25}}\]
\[ \Rightarrow {\text{x = 2}}{\text{.125}}\]
Now converting into a mixed fraction we get,
\[\therefore x = 2\dfrac{1}{8}\]
Substituting the value of x in equation(i)
\[ \Rightarrow {\text{2}}{\text{.125 + y = 4}}\]
\[ \Rightarrow {\text{y = 4 - 2}}{\text{.125}}\]
\[\therefore {\text{y = 1}}{\text{.875}}\]
So, we have our solution as, \[x = 2\dfrac{1}{8}\]and \[{\text{y = 1}}\dfrac{{\text{7}}}{{\text{8}}}\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

