
The oxidation state of O in \[\;{O_2}{F_2}\] is
A) +2
B) +1
C) -2
D) -1
Answer
551.1k+ views
Hint: Oxidation state represents the degree of oxidation (loss of electrons) of an atom in a chemical compound and Fluorine is the most electronegative element on the periodic table, which means that it is a very strong oxidizing agent and accepts other elements electrons.
Complete answer:
Now we determine the most electronegative atom.
Oxygen is the second most electronegative element. It has an electronegativity of 3.5 on the Pauling scale. That means if oxygen combines with an element which is more electronegative than it will surely possess a positive oxidation state.
Fluorine being the first most electronegative element than oxygen (electronegativity of 4.0 on Pauling scale) will in any case (except in fluorine gas), oxidation state of fluorine is - 1 in all its compounds. So, the oxidation state of oxygen will be positive. Being in the group 17 fluoride ion would gain an electron to a -1 charge, so each has an oxidation number of -1.
Let us calculate the oxidation state of oxygen-
Let be ‘x’ is an oxidation number of oxygen.
Oxidation number of \[{F_2}\] is \[ - 1\].
Net charge is zero because the compound is neutral.
2x - 2 = 0
x = $\dfrac{2}{2}$
x = 1
So the oxidation number of oxygen in \[{O_2}{F_2}\] is + 1.
The oxygen has an oxidation number of + 1 each.
Note: Fluorine in its gaseous form ($F_2$) has zero oxidation state. The oxidation number of other halogens (Cl, Br, I ) is also -1, except when they are combined with oxygen. Oxygen in most of its compounds exist in -2 oxidation state.
Complete answer:
Now we determine the most electronegative atom.
Oxygen is the second most electronegative element. It has an electronegativity of 3.5 on the Pauling scale. That means if oxygen combines with an element which is more electronegative than it will surely possess a positive oxidation state.
Fluorine being the first most electronegative element than oxygen (electronegativity of 4.0 on Pauling scale) will in any case (except in fluorine gas), oxidation state of fluorine is - 1 in all its compounds. So, the oxidation state of oxygen will be positive. Being in the group 17 fluoride ion would gain an electron to a -1 charge, so each has an oxidation number of -1.
Let us calculate the oxidation state of oxygen-
Let be ‘x’ is an oxidation number of oxygen.
Oxidation number of \[{F_2}\] is \[ - 1\].
Net charge is zero because the compound is neutral.
2x - 2 = 0
x = $\dfrac{2}{2}$
x = 1
So the oxidation number of oxygen in \[{O_2}{F_2}\] is + 1.
The oxygen has an oxidation number of + 1 each.
Note: Fluorine in its gaseous form ($F_2$) has zero oxidation state. The oxidation number of other halogens (Cl, Br, I ) is also -1, except when they are combined with oxygen. Oxygen in most of its compounds exist in -2 oxidation state.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

