
The oscillating frequency of a cyclotron is $10MHz.$ If the radius of its Dees is $0.5m$ , the kinetic energy of a proton, which is accelerated by the cyclotron is
\[A.\] $10.2MeV$
$B.$ $2.55MeV$
$C.$ $20.4MeV$
$D.$ $5.1MeV$
Answer
514.8k+ views
Hint: A cyclotron is the one of the compact particle accelerators which are used to accelerate the positive charge. Some of the positively charged particles are protons, deuterons and alpha particles. The cyclotron will work in the presence of both electric field and magnetic field. Here in this problem we will find kinetic energy in joules then we will convert to electron volt.
Complete step-by-step solution:
Given:
$f = 10MHz = 10 \times {10^6}Hz$
$r = 0.5m$
Kinetic energy, ${E_k} = ?$
Kinetic energy of charged particle of cyclotron is given by,
${E_k} = \dfrac{{{q^2}{B^2}{r^2}}}{{2m}}$ ………$\left( 1 \right)$
And frequency of cyclotron is given by,
$f = \dfrac{{qB}}{{2\pi m}}$ ………. $\left( 2 \right)$
On simplifying above equation we get
$ \Rightarrow qB = 2\pi mf$ ………. $\left( 3 \right)$
Substituting equation $\left( 3 \right)$ in equation $\left( 1 \right)$
${E_k} = \dfrac{{{{\left( {2\pi mf} \right)}^2}{r^2}}}{{2m}}$
On further simplification
$ \Rightarrow {E_k} = 2{\pi ^2}m{f^2}{r^2}$ ………….$\left( 4 \right)$
Substituting the given values in above equation
${E_k} = 2 \times {\left( {3.14} \right)^2} \times 1.67 \times {10^{ - 27}} \times {\left( {10 \times {{10}^6}} \right)^2} \times {\left( {0.5} \right)^2}$
On calculating we get,
\[{E_k} = 8.23 \times {10^{ - 13}}J\]
We know that, \[1eV = 1.6 \times {10^{ - 19}}J\] or $1J = \dfrac{1}{{1.6 \times {{10}^{ - 19}}}}eV$
Therefore, on converting $J$ to $eV$ we get
${E_K} = \dfrac{{8.23 \times {{10}^{ - 13}}}}{{1.6 \times {{10}^{ - 19}}}}eV$
Therefore, ${E_k} = 5.1 \times {10^6}eV$
$ \Rightarrow $ Kinetic energy of charged particle ${E_k} = 5.1MeV$
Hence, option $D$ is correct. That is $5.1MeV$
Note: The cyclotron is a device which works in the presence of both magnetic and electric fields. The presence of an electric field makes the positive charge like protons, deuterons and alpha particles move faster that is to increase in kinetic energy and the presence of a magnetic field makes the positive charge move in the circular path.
Complete step-by-step solution:
Given:
$f = 10MHz = 10 \times {10^6}Hz$
$r = 0.5m$
Kinetic energy, ${E_k} = ?$
Kinetic energy of charged particle of cyclotron is given by,
${E_k} = \dfrac{{{q^2}{B^2}{r^2}}}{{2m}}$ ………$\left( 1 \right)$
And frequency of cyclotron is given by,
$f = \dfrac{{qB}}{{2\pi m}}$ ………. $\left( 2 \right)$
On simplifying above equation we get
$ \Rightarrow qB = 2\pi mf$ ………. $\left( 3 \right)$
Substituting equation $\left( 3 \right)$ in equation $\left( 1 \right)$
${E_k} = \dfrac{{{{\left( {2\pi mf} \right)}^2}{r^2}}}{{2m}}$
On further simplification
$ \Rightarrow {E_k} = 2{\pi ^2}m{f^2}{r^2}$ ………….$\left( 4 \right)$
Substituting the given values in above equation
${E_k} = 2 \times {\left( {3.14} \right)^2} \times 1.67 \times {10^{ - 27}} \times {\left( {10 \times {{10}^6}} \right)^2} \times {\left( {0.5} \right)^2}$
On calculating we get,
\[{E_k} = 8.23 \times {10^{ - 13}}J\]
We know that, \[1eV = 1.6 \times {10^{ - 19}}J\] or $1J = \dfrac{1}{{1.6 \times {{10}^{ - 19}}}}eV$
Therefore, on converting $J$ to $eV$ we get
${E_K} = \dfrac{{8.23 \times {{10}^{ - 13}}}}{{1.6 \times {{10}^{ - 19}}}}eV$
Therefore, ${E_k} = 5.1 \times {10^6}eV$
$ \Rightarrow $ Kinetic energy of charged particle ${E_k} = 5.1MeV$
Hence, option $D$ is correct. That is $5.1MeV$
Note: The cyclotron is a device which works in the presence of both magnetic and electric fields. The presence of an electric field makes the positive charge like protons, deuterons and alpha particles move faster that is to increase in kinetic energy and the presence of a magnetic field makes the positive charge move in the circular path.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

