
The orthocenter of a right-angled triangle is formed
(A). Inside the triangle
(B). On the hypotenuse of the triangle
(C). Behind the right angle of the triangle
(D). On the right vertex of the triangle
Answer
576.3k+ views
Hint: First look at the definition of orthocenter and required terms to find the orthocenter. By options check the correct answer. Check the position of the orthocenter exactly to get the right answer related to all terms of definition to the right angled triangle.
Complete step-by-step solution -
Given condition in the question is written as follows below:
Orthocenter of a right angled triangle.
The orthocenter is a point of intersection of all the three altitudes of the triangle.
We know that there are three altitudes of a triangle.
In a right angled triangle two sides are perpendicular.
The line drawn from a vertex which is perpendicular to the opposite side is altitude. The 2 side’s perpendicular will themselves become the altitude of respective vertex.
Now we have 2 altitudes meet at a vertex. The altitude from that vertex will obviously pass through that vertex.
So, by this way we can say the intersection of all the altitudes is the right angle vertex.
So, option (d) is the correct answer.
Note: Generally students confuse between the terms orthocenter, circumcenter. Use the definition properly. While finding altitude the idea of saying both sides all altitudes is very crucial which leads us to the result obtained.
Complete step-by-step solution -
Given condition in the question is written as follows below:
Orthocenter of a right angled triangle.
The orthocenter is a point of intersection of all the three altitudes of the triangle.
We know that there are three altitudes of a triangle.
In a right angled triangle two sides are perpendicular.
The line drawn from a vertex which is perpendicular to the opposite side is altitude. The 2 side’s perpendicular will themselves become the altitude of respective vertex.
Now we have 2 altitudes meet at a vertex. The altitude from that vertex will obviously pass through that vertex.
So, by this way we can say the intersection of all the altitudes is the right angle vertex.
So, option (d) is the correct answer.
Note: Generally students confuse between the terms orthocenter, circumcenter. Use the definition properly. While finding altitude the idea of saying both sides all altitudes is very crucial which leads us to the result obtained.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

