
The number of the solution of the equation, \[{{z}^{2}}+\bar{z}=0\] is
a.1
b.2
c.3
d.4
Answer
616.8k+ views
Hint: Put, \[z=x+iy\] and \[\bar{z}=x-iy\]. Solve the expression by putting these values. Find the real and imaginary part from the expression and find the solutions.
Complete step-by-step answer:
A complex number is a number that can be expressed in the form of \[x+iy\], where x and y are real numbers and i is the solution of the equation \[{{x}^{2}}=-1\]. As no real number satisfies this equation, it is called an imaginary number.
Let us consider, \[z=x+iy\].
\[\therefore \bar{z}=x-iy\].
We have been given that, \[{{z}^{2}}+\bar{z}=0\].
Substitute the value of z and \[\bar{z}\] in the above expression.
\[{{\left( x+iy \right)}^{2}}+\left( x-iy \right)=0\]
\[{{x}^{2}}+2xyi+{{\left( iy \right)}^{2}}+x-iy=0\] \[\left( \because {{i}^{2}}=-1 \right)\]
\[{{x}^{2}}+2ixy-{{y}^{2}}+x-iy=0\]
Now let us rearrange the above expression.
\[\left( {{x}^{2}}-{{y}^{2}}+x \right)+i\left( 2xy-y \right)=0\]
In this above equation, we can find the real part and imaginary part.
Thus the real part \[\Rightarrow {{x}^{2}}-{{y}^{2}}+x=0-(1)\]
Imaginary part \[\Rightarrow 2xy-y=0-(2)\]
Let us consider the equation (2).
\[\begin{align}
& 2xy-y=0 \\
& y\left( 2x-1 \right)=0 \\
\end{align}\]
\[\therefore y=0\] and \[2x-1=0\Rightarrow 2x=1\Rightarrow x=\dfrac{1}{2}\].
Thus we got \[x=\dfrac{1}{2}\] and y = 0.
Let us substitute these values in equation (1).
Put y = 0 in equation (1).
\[\begin{align}
& {{x}^{2}}-{{y}^{2}}+x=0 \\
& {{x}^{\to 2}}-0+x=0 \\
& x\left( x+1 \right)=0 \\
\end{align}\]
\[\therefore x=0\] and \[x=-1\].
When y = 0, value of x = 0, -1.
Now put \[x=\dfrac{1}{2}\] in equation (1).
\[\begin{align}
& {{x}^{2}}-{{y}^{2}}+x=0 \\
& {{x}^{2}}+x={{y}^{2}} \\
& {{y}^{2}}={{\left( \dfrac{1}{2} \right)}^{2}}+\dfrac{1}{2} \\
& y=\sqrt{\dfrac{1}{4}+\dfrac{1}{2}}=\sqrt{\dfrac{3}{4}}=\pm \dfrac{\sqrt{3}}{2} \\
\end{align}\]
Thus when, \[x=\dfrac{1}{2}\], we get the value of \[y=\pm \dfrac{\sqrt{3}}{2}\].
Hence we got the solutions as \[\left( 0,0 \right),\left( -1,0 \right),\left( \dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right)\] and \[\left( \dfrac{1}{2},\dfrac{-\sqrt{3}}{2} \right)\].
Thus we got 4 solutions.
\[\therefore \] Option (d) is the correct answer.
Note:
We can also solve this by, \[{{z}^{2}}+\bar{z}=0\].
\[\therefore {{z}^{2}}=-\bar{z}\]
Taking modulus, \[{{\left| z \right|}^{2}}=\left| z \right|\].
Hence, \[\left| z \right|=0\] or 1
When z = 0, we get z = 0 to satisfy the equation.
In \[{{2}^{nd}}\] case, \[z={{e}^{i\theta }}\] for \[\theta \in \left[ 0,\left. 2\pi \right) \right.\].
\[{{\left| z \right|}^{2}}={{e}^{2i\theta }}={{e}^{\left( 2n+1 \right)i\pi }}.{{e}^{-i\theta }},n\in z\]
\[3\theta =\left( 2n+1 \right)\pi \] and \[\theta \in \left\{ \dfrac{\pi }{2},\pi ,\dfrac{5\pi }{3} \right\}\].
\[\dfrac{\pi }{3}+\dfrac{5\pi }{3}=2\pi \], thus we get the solutions as,
\[\begin{align}
& z={{e}^{\dfrac{\pi i}{3}}}=\dfrac{1+\sqrt{3}i}{2} \\
& z={{e}^{\pi i}}=-1 \\
& z={{e}^{\dfrac{5\pi i}{3}}}={{e}^{\dfrac{-\pi i}{3}}}=\dfrac{1-\sqrt{3}i}{2} \\
\end{align}\]
Thus 4 solutions are, \[z=0,-1,\dfrac{1\pm \sqrt{3}i}{2}\].
Complete step-by-step answer:
A complex number is a number that can be expressed in the form of \[x+iy\], where x and y are real numbers and i is the solution of the equation \[{{x}^{2}}=-1\]. As no real number satisfies this equation, it is called an imaginary number.
Let us consider, \[z=x+iy\].
\[\therefore \bar{z}=x-iy\].
We have been given that, \[{{z}^{2}}+\bar{z}=0\].
Substitute the value of z and \[\bar{z}\] in the above expression.
\[{{\left( x+iy \right)}^{2}}+\left( x-iy \right)=0\]
\[{{x}^{2}}+2xyi+{{\left( iy \right)}^{2}}+x-iy=0\] \[\left( \because {{i}^{2}}=-1 \right)\]
\[{{x}^{2}}+2ixy-{{y}^{2}}+x-iy=0\]
Now let us rearrange the above expression.
\[\left( {{x}^{2}}-{{y}^{2}}+x \right)+i\left( 2xy-y \right)=0\]
In this above equation, we can find the real part and imaginary part.
Thus the real part \[\Rightarrow {{x}^{2}}-{{y}^{2}}+x=0-(1)\]
Imaginary part \[\Rightarrow 2xy-y=0-(2)\]
Let us consider the equation (2).
\[\begin{align}
& 2xy-y=0 \\
& y\left( 2x-1 \right)=0 \\
\end{align}\]
\[\therefore y=0\] and \[2x-1=0\Rightarrow 2x=1\Rightarrow x=\dfrac{1}{2}\].
Thus we got \[x=\dfrac{1}{2}\] and y = 0.
Let us substitute these values in equation (1).
Put y = 0 in equation (1).
\[\begin{align}
& {{x}^{2}}-{{y}^{2}}+x=0 \\
& {{x}^{\to 2}}-0+x=0 \\
& x\left( x+1 \right)=0 \\
\end{align}\]
\[\therefore x=0\] and \[x=-1\].
When y = 0, value of x = 0, -1.
Now put \[x=\dfrac{1}{2}\] in equation (1).
\[\begin{align}
& {{x}^{2}}-{{y}^{2}}+x=0 \\
& {{x}^{2}}+x={{y}^{2}} \\
& {{y}^{2}}={{\left( \dfrac{1}{2} \right)}^{2}}+\dfrac{1}{2} \\
& y=\sqrt{\dfrac{1}{4}+\dfrac{1}{2}}=\sqrt{\dfrac{3}{4}}=\pm \dfrac{\sqrt{3}}{2} \\
\end{align}\]
Thus when, \[x=\dfrac{1}{2}\], we get the value of \[y=\pm \dfrac{\sqrt{3}}{2}\].
Hence we got the solutions as \[\left( 0,0 \right),\left( -1,0 \right),\left( \dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right)\] and \[\left( \dfrac{1}{2},\dfrac{-\sqrt{3}}{2} \right)\].
Thus we got 4 solutions.
\[\therefore \] Option (d) is the correct answer.
Note:
We can also solve this by, \[{{z}^{2}}+\bar{z}=0\].
\[\therefore {{z}^{2}}=-\bar{z}\]
Taking modulus, \[{{\left| z \right|}^{2}}=\left| z \right|\].
Hence, \[\left| z \right|=0\] or 1
When z = 0, we get z = 0 to satisfy the equation.
In \[{{2}^{nd}}\] case, \[z={{e}^{i\theta }}\] for \[\theta \in \left[ 0,\left. 2\pi \right) \right.\].
\[{{\left| z \right|}^{2}}={{e}^{2i\theta }}={{e}^{\left( 2n+1 \right)i\pi }}.{{e}^{-i\theta }},n\in z\]
\[3\theta =\left( 2n+1 \right)\pi \] and \[\theta \in \left\{ \dfrac{\pi }{2},\pi ,\dfrac{5\pi }{3} \right\}\].
\[\dfrac{\pi }{3}+\dfrac{5\pi }{3}=2\pi \], thus we get the solutions as,
\[\begin{align}
& z={{e}^{\dfrac{\pi i}{3}}}=\dfrac{1+\sqrt{3}i}{2} \\
& z={{e}^{\pi i}}=-1 \\
& z={{e}^{\dfrac{5\pi i}{3}}}={{e}^{\dfrac{-\pi i}{3}}}=\dfrac{1-\sqrt{3}i}{2} \\
\end{align}\]
Thus 4 solutions are, \[z=0,-1,\dfrac{1\pm \sqrt{3}i}{2}\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

