
The number of the solution of the equation, \[{{z}^{2}}+\bar{z}=0\] is
a.1
b.2
c.3
d.4
Answer
518.7k+ views
Hint: Put, \[z=x+iy\] and \[\bar{z}=x-iy\]. Solve the expression by putting these values. Find the real and imaginary part from the expression and find the solutions.
Complete step-by-step answer:
A complex number is a number that can be expressed in the form of \[x+iy\], where x and y are real numbers and i is the solution of the equation \[{{x}^{2}}=-1\]. As no real number satisfies this equation, it is called an imaginary number.
Let us consider, \[z=x+iy\].
\[\therefore \bar{z}=x-iy\].
We have been given that, \[{{z}^{2}}+\bar{z}=0\].
Substitute the value of z and \[\bar{z}\] in the above expression.
\[{{\left( x+iy \right)}^{2}}+\left( x-iy \right)=0\]
\[{{x}^{2}}+2xyi+{{\left( iy \right)}^{2}}+x-iy=0\] \[\left( \because {{i}^{2}}=-1 \right)\]
\[{{x}^{2}}+2ixy-{{y}^{2}}+x-iy=0\]
Now let us rearrange the above expression.
\[\left( {{x}^{2}}-{{y}^{2}}+x \right)+i\left( 2xy-y \right)=0\]
In this above equation, we can find the real part and imaginary part.
Thus the real part \[\Rightarrow {{x}^{2}}-{{y}^{2}}+x=0-(1)\]
Imaginary part \[\Rightarrow 2xy-y=0-(2)\]
Let us consider the equation (2).
\[\begin{align}
& 2xy-y=0 \\
& y\left( 2x-1 \right)=0 \\
\end{align}\]
\[\therefore y=0\] and \[2x-1=0\Rightarrow 2x=1\Rightarrow x=\dfrac{1}{2}\].
Thus we got \[x=\dfrac{1}{2}\] and y = 0.
Let us substitute these values in equation (1).
Put y = 0 in equation (1).
\[\begin{align}
& {{x}^{2}}-{{y}^{2}}+x=0 \\
& {{x}^{\to 2}}-0+x=0 \\
& x\left( x+1 \right)=0 \\
\end{align}\]
\[\therefore x=0\] and \[x=-1\].
When y = 0, value of x = 0, -1.
Now put \[x=\dfrac{1}{2}\] in equation (1).
\[\begin{align}
& {{x}^{2}}-{{y}^{2}}+x=0 \\
& {{x}^{2}}+x={{y}^{2}} \\
& {{y}^{2}}={{\left( \dfrac{1}{2} \right)}^{2}}+\dfrac{1}{2} \\
& y=\sqrt{\dfrac{1}{4}+\dfrac{1}{2}}=\sqrt{\dfrac{3}{4}}=\pm \dfrac{\sqrt{3}}{2} \\
\end{align}\]
Thus when, \[x=\dfrac{1}{2}\], we get the value of \[y=\pm \dfrac{\sqrt{3}}{2}\].
Hence we got the solutions as \[\left( 0,0 \right),\left( -1,0 \right),\left( \dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right)\] and \[\left( \dfrac{1}{2},\dfrac{-\sqrt{3}}{2} \right)\].
Thus we got 4 solutions.
\[\therefore \] Option (d) is the correct answer.
Note:
We can also solve this by, \[{{z}^{2}}+\bar{z}=0\].
\[\therefore {{z}^{2}}=-\bar{z}\]
Taking modulus, \[{{\left| z \right|}^{2}}=\left| z \right|\].
Hence, \[\left| z \right|=0\] or 1
When z = 0, we get z = 0 to satisfy the equation.
In \[{{2}^{nd}}\] case, \[z={{e}^{i\theta }}\] for \[\theta \in \left[ 0,\left. 2\pi \right) \right.\].
\[{{\left| z \right|}^{2}}={{e}^{2i\theta }}={{e}^{\left( 2n+1 \right)i\pi }}.{{e}^{-i\theta }},n\in z\]
\[3\theta =\left( 2n+1 \right)\pi \] and \[\theta \in \left\{ \dfrac{\pi }{2},\pi ,\dfrac{5\pi }{3} \right\}\].
\[\dfrac{\pi }{3}+\dfrac{5\pi }{3}=2\pi \], thus we get the solutions as,
\[\begin{align}
& z={{e}^{\dfrac{\pi i}{3}}}=\dfrac{1+\sqrt{3}i}{2} \\
& z={{e}^{\pi i}}=-1 \\
& z={{e}^{\dfrac{5\pi i}{3}}}={{e}^{\dfrac{-\pi i}{3}}}=\dfrac{1-\sqrt{3}i}{2} \\
\end{align}\]
Thus 4 solutions are, \[z=0,-1,\dfrac{1\pm \sqrt{3}i}{2}\].
Complete step-by-step answer:
A complex number is a number that can be expressed in the form of \[x+iy\], where x and y are real numbers and i is the solution of the equation \[{{x}^{2}}=-1\]. As no real number satisfies this equation, it is called an imaginary number.
Let us consider, \[z=x+iy\].
\[\therefore \bar{z}=x-iy\].
We have been given that, \[{{z}^{2}}+\bar{z}=0\].
Substitute the value of z and \[\bar{z}\] in the above expression.
\[{{\left( x+iy \right)}^{2}}+\left( x-iy \right)=0\]
\[{{x}^{2}}+2xyi+{{\left( iy \right)}^{2}}+x-iy=0\] \[\left( \because {{i}^{2}}=-1 \right)\]
\[{{x}^{2}}+2ixy-{{y}^{2}}+x-iy=0\]
Now let us rearrange the above expression.
\[\left( {{x}^{2}}-{{y}^{2}}+x \right)+i\left( 2xy-y \right)=0\]
In this above equation, we can find the real part and imaginary part.
Thus the real part \[\Rightarrow {{x}^{2}}-{{y}^{2}}+x=0-(1)\]
Imaginary part \[\Rightarrow 2xy-y=0-(2)\]
Let us consider the equation (2).
\[\begin{align}
& 2xy-y=0 \\
& y\left( 2x-1 \right)=0 \\
\end{align}\]
\[\therefore y=0\] and \[2x-1=0\Rightarrow 2x=1\Rightarrow x=\dfrac{1}{2}\].
Thus we got \[x=\dfrac{1}{2}\] and y = 0.
Let us substitute these values in equation (1).
Put y = 0 in equation (1).
\[\begin{align}
& {{x}^{2}}-{{y}^{2}}+x=0 \\
& {{x}^{\to 2}}-0+x=0 \\
& x\left( x+1 \right)=0 \\
\end{align}\]
\[\therefore x=0\] and \[x=-1\].
When y = 0, value of x = 0, -1.
Now put \[x=\dfrac{1}{2}\] in equation (1).
\[\begin{align}
& {{x}^{2}}-{{y}^{2}}+x=0 \\
& {{x}^{2}}+x={{y}^{2}} \\
& {{y}^{2}}={{\left( \dfrac{1}{2} \right)}^{2}}+\dfrac{1}{2} \\
& y=\sqrt{\dfrac{1}{4}+\dfrac{1}{2}}=\sqrt{\dfrac{3}{4}}=\pm \dfrac{\sqrt{3}}{2} \\
\end{align}\]
Thus when, \[x=\dfrac{1}{2}\], we get the value of \[y=\pm \dfrac{\sqrt{3}}{2}\].
Hence we got the solutions as \[\left( 0,0 \right),\left( -1,0 \right),\left( \dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right)\] and \[\left( \dfrac{1}{2},\dfrac{-\sqrt{3}}{2} \right)\].
Thus we got 4 solutions.
\[\therefore \] Option (d) is the correct answer.
Note:
We can also solve this by, \[{{z}^{2}}+\bar{z}=0\].
\[\therefore {{z}^{2}}=-\bar{z}\]
Taking modulus, \[{{\left| z \right|}^{2}}=\left| z \right|\].
Hence, \[\left| z \right|=0\] or 1
When z = 0, we get z = 0 to satisfy the equation.
In \[{{2}^{nd}}\] case, \[z={{e}^{i\theta }}\] for \[\theta \in \left[ 0,\left. 2\pi \right) \right.\].
\[{{\left| z \right|}^{2}}={{e}^{2i\theta }}={{e}^{\left( 2n+1 \right)i\pi }}.{{e}^{-i\theta }},n\in z\]
\[3\theta =\left( 2n+1 \right)\pi \] and \[\theta \in \left\{ \dfrac{\pi }{2},\pi ,\dfrac{5\pi }{3} \right\}\].
\[\dfrac{\pi }{3}+\dfrac{5\pi }{3}=2\pi \], thus we get the solutions as,
\[\begin{align}
& z={{e}^{\dfrac{\pi i}{3}}}=\dfrac{1+\sqrt{3}i}{2} \\
& z={{e}^{\pi i}}=-1 \\
& z={{e}^{\dfrac{5\pi i}{3}}}={{e}^{\dfrac{-\pi i}{3}}}=\dfrac{1-\sqrt{3}i}{2} \\
\end{align}\]
Thus 4 solutions are, \[z=0,-1,\dfrac{1\pm \sqrt{3}i}{2}\].
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE
