
The number of non- trivial solution of the system $x - y + z = 0,\;x + 2y - z = 0$ and $2x + y + 3z = 0$ is:
A) 0. B) 1. C) 2. D) 3
Answer
581.4k+ views
Hint: For the non- trivial solution for the system of equations. The determinant of the coefficient of the matrix is zero.
$\boxed{\Delta = 0}$
Complete step-by-step answer:
In the question given above, we are asked for the number of non- trivial solutions for the given equation.
The equation given in the question are as follows:
$x - y + z = 0$ ①
$x + 2y - z = 0$ ②
And $2x + y + 3z = 0$ ③
Now, if we are asked for the non-trivial solution for the given system of linear equations, then we find the determinant of the coefficient of the matrix which must be equal to zero (0).
So, coefficient of equation ①; of ${\text{x,y,}}\;{\text{and}}\;{\text{'z'}}$ respectively are 1,-1, and 1 for $x - y + z = 0$ similarly, the coefficient of equation ②; for $x,y,\;{\text{and}}\;{\text{z}}$ respectively are $1,2, - 1$ for equation $x + 2y - z = 0$
In the similar manner,
the coefficient of equation ③; for $x,y\;{\text{and}}\;{\text{z}}$ respectively are $2,1,3$ for equation $2x + y + 3z = 0$
finding determinant:
\[\Delta = \left| {\begin{array}{*{20}{c}}
1&{ - 1}&1 \\
1&2&{ - 1} \\
2&1&3
\end{array}} \right|\]
For determinant of ;
$\begin{gathered}
\Delta = \left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}} \\
{{a_3}}&{{b_3}}&{{c_3}}
\end{array}} \right| = \\
\\
\end{gathered} $ $\begin{gathered}
{a_1}\left( {{b_2}{C_3} - {b_3}{C_2}} \right) - \\
{b_1}\left( {{a_2}{c_3} - {a_3}{c_2}} \right) + {c_1} \\
\;\;\;\;\left( {{a_2}{b_3} - {a_3}{b_2}} \right) \\
\end{gathered} $
So,
$\Delta = \left| {\begin{array}{*{20}{c}}
1&{ - 1}&1 \\
1&2&{ - 1} \\
2&1&3
\end{array}} \right| = $ $\begin{gathered}
1\left( {3 \times 2 - \left( { - 1 \times 1} \right)} \right) - \\
\left( { - 1} \right)\left( {1 \times 3 - \left( { - 1 \times 2} \right)} \right) + \\
1\left( {1 \times 1 - 2 \times 2} \right) \\
\end{gathered} $
$ \Rightarrow 1\left( {6 - \left( { - 1} \right)} \right) + 1\left( {3 - \left( { - 2} \right)} \right) + 1\left( {1 - 4} \right)$
$ \Rightarrow 1\left( {6 + 1} \right) + 1\left( {3 + 2} \right) + 1\left( { - 3} \right)$
$ \Rightarrow 1\left( 7 \right) + 1\left( 5 \right) - 3$
$ \Rightarrow 7 + 5 - 3$
$ \Rightarrow 12 - 3 = 9$
So, here determinant value in 9 not 0
Hence, the given system of linear equations has no trivial solution.
Therefore the number of trivial solutions is 0.
Note : The given system of linear equations will have a non-trivial solution only if the determinant of the coefficient of the matrix is zero.
$\boxed{\Delta = 0}$
Complete step-by-step answer:
In the question given above, we are asked for the number of non- trivial solutions for the given equation.
The equation given in the question are as follows:
$x - y + z = 0$ ①
$x + 2y - z = 0$ ②
And $2x + y + 3z = 0$ ③
Now, if we are asked for the non-trivial solution for the given system of linear equations, then we find the determinant of the coefficient of the matrix which must be equal to zero (0).
So, coefficient of equation ①; of ${\text{x,y,}}\;{\text{and}}\;{\text{'z'}}$ respectively are 1,-1, and 1 for $x - y + z = 0$ similarly, the coefficient of equation ②; for $x,y,\;{\text{and}}\;{\text{z}}$ respectively are $1,2, - 1$ for equation $x + 2y - z = 0$
In the similar manner,
the coefficient of equation ③; for $x,y\;{\text{and}}\;{\text{z}}$ respectively are $2,1,3$ for equation $2x + y + 3z = 0$
finding determinant:
\[\Delta = \left| {\begin{array}{*{20}{c}}
1&{ - 1}&1 \\
1&2&{ - 1} \\
2&1&3
\end{array}} \right|\]
For determinant of ;
$\begin{gathered}
\Delta = \left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}} \\
{{a_3}}&{{b_3}}&{{c_3}}
\end{array}} \right| = \\
\\
\end{gathered} $ $\begin{gathered}
{a_1}\left( {{b_2}{C_3} - {b_3}{C_2}} \right) - \\
{b_1}\left( {{a_2}{c_3} - {a_3}{c_2}} \right) + {c_1} \\
\;\;\;\;\left( {{a_2}{b_3} - {a_3}{b_2}} \right) \\
\end{gathered} $
So,
$\Delta = \left| {\begin{array}{*{20}{c}}
1&{ - 1}&1 \\
1&2&{ - 1} \\
2&1&3
\end{array}} \right| = $ $\begin{gathered}
1\left( {3 \times 2 - \left( { - 1 \times 1} \right)} \right) - \\
\left( { - 1} \right)\left( {1 \times 3 - \left( { - 1 \times 2} \right)} \right) + \\
1\left( {1 \times 1 - 2 \times 2} \right) \\
\end{gathered} $
$ \Rightarrow 1\left( {6 - \left( { - 1} \right)} \right) + 1\left( {3 - \left( { - 2} \right)} \right) + 1\left( {1 - 4} \right)$
$ \Rightarrow 1\left( {6 + 1} \right) + 1\left( {3 + 2} \right) + 1\left( { - 3} \right)$
$ \Rightarrow 1\left( 7 \right) + 1\left( 5 \right) - 3$
$ \Rightarrow 7 + 5 - 3$
$ \Rightarrow 12 - 3 = 9$
So, here determinant value in 9 not 0
Hence, the given system of linear equations has no trivial solution.
Therefore the number of trivial solutions is 0.
Note : The given system of linear equations will have a non-trivial solution only if the determinant of the coefficient of the matrix is zero.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

