
The number of distinct real roots of the equation, $\left| {\begin{array}{*{20}{c}}
{\cos x}&{\sin x}&{\sin x} \\
{\sin x}&{\cos x}&{\sin x} \\
{\sin x}&{\sin x}&{\cos x}
\end{array}} \right| = 0$ in the interval $\left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right]$ is/are:
A. $3$
B. $2$
C. $1$
D. $4$
Answer
576.3k+ views
Hint:At first, use the row or column operations to simplify the determinant as much as you can. Once it is simplified, open the determinant and equate it to $0$. Find the value of $x$ such that the equation satisfies. Count the number of values.
Complete step-by-step answer:
$\left| {\begin{array}{*{20}{c}}
{\cos x}&{\sin x}&{\sin x} \\
{\sin x}&{\cos x}&{\sin x} \\
{\sin x}&{\sin x}&{\cos x}
\end{array}} \right| = 0$
Using column operator, ${C_1} \to {C_1} - {C_2}$
$\left| {\begin{array}{*{20}{c}}
{\cos x - \sin x}&{\sin x}&{\sin x} \\
{\sin x - \cos x}&{\cos x}&{\sin x} \\
0&{\sin x}&{\cos x}
\end{array}} \right| = 0$
Using column operator, ${C_2} \to {C_2} - {C_3}$
$\left| {\begin{array}{*{20}{c}}
{\cos x - \sin x}&0&{\sin x} \\
{\sin x - \cos x}&{\cos x - \sin x}&{\sin x} \\
0&{\sin x - \cos x}&{\cos x}
\end{array}} \right| = 0$
Taking $\sin x - \cos x$ common from ${C_1}$
$(\sin x - \cos x)$$\left| {\begin{array}{*{20}{c}}
{ - 1}&0&{\sin x} \\
1&{\cos x - \sin x}&{\sin x} \\
0&{\sin x - \cos x}&{\cos x}
\end{array}} \right| = 0$
Taking $(\sin x - \cos x)$ from ${C_2}$
${(\sin x - \cos x)^2}$$\left| {\begin{array}{*{20}{c}}
{ - 1}&0&{\sin x} \\
1&{ - 1}&{\sin x} \\
0&1&{\cos x}
\end{array}} \right| = 0$
Now the determinant is simplified.
So, we will open it.
${(\sin x - \cos x)^2}$$\left[ { - 1( - \cos x - \sin x) + 0 + \sin x} \right] = 0$
${(\sin x - \cos x)^2}$$\left[ {\cos x + 2\sin x} \right] = 0$
At least one of the terms must be $0$ in order to satisfy the equation.
Hence, ${(\sin x - \cos x)^2}$$ = 0$ or $\left[ {\cos x + 2\sin x} \right] = 0$
$\sin x = \cos x$ or $2\sin x = -\cos x$
We know $\dfrac{\sin x}{\cos } = \tan x$
Simplifying we get $\tan x= 1$ or $\tan x = - \dfrac{1}{2}$
$x = \dfrac{\pi }{4}$ or $x = {\tan ^{ - 1}}( - \dfrac{1}{2})$
Now range of $x$ is $\left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right]$
Hence possible values of $x$ are $\dfrac{\pi }{4}$and ${\tan ^{ - 1}}( - \dfrac{1}{2})$
Hence there are two distinct real roots.
So, the correct answer is “Option B”.
Note:Students should be very careful about the signs while performing row or column operation.We have to carefully analyse which operation should be performed .Students should remember trigonometric ratios and method of calculating the determinant value for solving these types of problems.
Complete step-by-step answer:
$\left| {\begin{array}{*{20}{c}}
{\cos x}&{\sin x}&{\sin x} \\
{\sin x}&{\cos x}&{\sin x} \\
{\sin x}&{\sin x}&{\cos x}
\end{array}} \right| = 0$
Using column operator, ${C_1} \to {C_1} - {C_2}$
$\left| {\begin{array}{*{20}{c}}
{\cos x - \sin x}&{\sin x}&{\sin x} \\
{\sin x - \cos x}&{\cos x}&{\sin x} \\
0&{\sin x}&{\cos x}
\end{array}} \right| = 0$
Using column operator, ${C_2} \to {C_2} - {C_3}$
$\left| {\begin{array}{*{20}{c}}
{\cos x - \sin x}&0&{\sin x} \\
{\sin x - \cos x}&{\cos x - \sin x}&{\sin x} \\
0&{\sin x - \cos x}&{\cos x}
\end{array}} \right| = 0$
Taking $\sin x - \cos x$ common from ${C_1}$
$(\sin x - \cos x)$$\left| {\begin{array}{*{20}{c}}
{ - 1}&0&{\sin x} \\
1&{\cos x - \sin x}&{\sin x} \\
0&{\sin x - \cos x}&{\cos x}
\end{array}} \right| = 0$
Taking $(\sin x - \cos x)$ from ${C_2}$
${(\sin x - \cos x)^2}$$\left| {\begin{array}{*{20}{c}}
{ - 1}&0&{\sin x} \\
1&{ - 1}&{\sin x} \\
0&1&{\cos x}
\end{array}} \right| = 0$
Now the determinant is simplified.
So, we will open it.
${(\sin x - \cos x)^2}$$\left[ { - 1( - \cos x - \sin x) + 0 + \sin x} \right] = 0$
${(\sin x - \cos x)^2}$$\left[ {\cos x + 2\sin x} \right] = 0$
At least one of the terms must be $0$ in order to satisfy the equation.
Hence, ${(\sin x - \cos x)^2}$$ = 0$ or $\left[ {\cos x + 2\sin x} \right] = 0$
$\sin x = \cos x$ or $2\sin x = -\cos x$
We know $\dfrac{\sin x}{\cos } = \tan x$
Simplifying we get $\tan x= 1$ or $\tan x = - \dfrac{1}{2}$
$x = \dfrac{\pi }{4}$ or $x = {\tan ^{ - 1}}( - \dfrac{1}{2})$
Now range of $x$ is $\left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right]$
Hence possible values of $x$ are $\dfrac{\pi }{4}$and ${\tan ^{ - 1}}( - \dfrac{1}{2})$
Hence there are two distinct real roots.
So, the correct answer is “Option B”.
Note:Students should be very careful about the signs while performing row or column operation.We have to carefully analyse which operation should be performed .Students should remember trigonometric ratios and method of calculating the determinant value for solving these types of problems.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

