
The number of different seven-digit numbers that can be written using only three digits 1,2 and 3 under the condition that the digit two occurs exactly twice in each number is
A) 672
B) 640
C) 512
D) None of these
Answer
473.7k+ views
Hint:
Here, we will find the number of ways of the arrangement of the digit if two occur exactly twice in each seven-digit number by using the combination formula. Then by using the powers, we will find the number of ways of arranging the remaining five-digit number. We will then multiply the number of the arrangement of digits in both the cases to get the number of different seven-digit numbers.
Formula Used:
We will use the following formula:
1) Combination is given by the formula
2) Factorial is given by the formula
Complete step by step solution:
We are given the number of different seven-digit numbers that can be written using only three digits 1,2 and 3. Therefore,
Total number of Digits
We are given that the digit two occurs exactly twice in each number.
Thus, the digit two occurs twice in the seven digit number.
Now, we will find the number of ways of arrangement of the digit two in the seven digit number by using combination.
Total number of ways that the digit two occurs exactly twice in each number
Now, the remaining five digits can be written using two digits 1 and 3 in ways.
We will now find the total number of seven digit number by multiplying the number of ways of arrangement in both the cases. Therefore
Total number of seven digit number
Now by using the formula , we get
Total number of seven digit number
Subtracting the terms in the denominator, we get
Total number of seven digit number
We know that the factorial can be written by the formula , so we get
Total number of seven digit number
Total number of seven digit number
Simplifying the expression, we get
Total number of seven digit number
Multiplying the terms, we get
Total number of seven digit number
Therefore, the number of different seven-digit numbers that can be written using only three digits 1,2 and 3 is 672.
Thus, option (A) is the correct answer.
Note:
We know that there is not much difference between permutation and combination. Permutation is the way or method of arranging numbers from a given set of numbers such that the order of arrangement matters. Whereas combination is the way of selecting items from a given set of items where order of selection doesn’t matter. Both the word combination and permutation is the way of arrangement. Here, we will not use permutation because the order of toys is not necessary.
Here, we will find the number of ways of the arrangement of the digit if two occur exactly twice in each seven-digit number by using the combination formula. Then by using the powers, we will find the number of ways of arranging the remaining five-digit number. We will then multiply the number of the arrangement of digits in both the cases to get the number of different seven-digit numbers.
Formula Used:
We will use the following formula:
1) Combination is given by the formula
2) Factorial is given by the formula
Complete step by step solution:
We are given the number of different seven-digit numbers that can be written using only three digits 1,2 and 3. Therefore,
Total number of Digits
We are given that the digit two occurs exactly twice in each number.
Thus, the digit two occurs twice in the seven digit number.
Now, we will find the number of ways of arrangement of the digit two in the seven digit number by using combination.
Total number of ways that the digit two occurs exactly twice in each number
Now, the remaining five digits can be written using two digits 1 and 3 in
We will now find the total number of seven digit number by multiplying the number of ways of arrangement in both the cases. Therefore
Total number of seven digit number
Now by using the formula
Subtracting the terms in the denominator, we get
We know that the factorial can be written by the formula
Simplifying the expression, we get
Multiplying the terms, we get
Therefore, the number of different seven-digit numbers that can be written using only three digits 1,2 and 3 is 672.
Thus, option (A) is the correct answer.
Note:
We know that there is not much difference between permutation and combination. Permutation is the way or method of arranging numbers from a given set of numbers such that the order of arrangement matters. Whereas combination is the way of selecting items from a given set of items where order of selection doesn’t matter. Both the word combination and permutation is the way of arrangement. Here, we will not use permutation because the order of toys is not necessary.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

Find the value of the expression given below sin 30circ class 11 maths CBSE

How many ATP molecules are produced from the complete class 11 biology CBSE

How many moles and how many grams of NaCl are present class 11 chemistry CBSE
