
The no. of positive integral solutions $ \left( x,y \right) $ of the equation $ {{\tan }^{-1}}\left( x \right)+{{\cot }^{-1}}\left( y \right)={{\tan }^{-1}}\left( 3 \right) $ are?
Answer
567k+ views
Hint: We start solving the problem by using the fact $ {{\cot }^{-1}}\left( a \right)={{\tan }^{-1}}\left( \dfrac{1}{a} \right) $ in the given trigonometric equation. We then make the necessary arrangements and make use of the fact $ {{\tan }^{-1}}\left( a \right)-{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right) $ to proceed through the problem. We then make the necessary calculations to get the relation between x and y. We then check the values of x and y for which the given conditions are satisfied to get the required answer.
Complete step by step answer:
According to the problem, we are asked to find the total no. of positive integral solutions $ \left( x,y \right) $ of the equation $ {{\tan }^{-1}}\left( x \right)+{{\cot }^{-1}}\left( y \right)={{\tan }^{-1}}\left( 3 \right) $ .
We have given $ {{\tan }^{-1}}\left( x \right)+{{\cot }^{-1}}\left( y \right)={{\tan }^{-1}}\left( 3 \right) $ .
We know that $ {{\cot }^{-1}}\left( a \right)={{\tan }^{-1}}\left( \dfrac{1}{a} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{y} \right)={{\tan }^{-1}}\left( 3 \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{y} \right)={{\tan }^{-1}}\left( 3 \right)-{{\tan }^{-1}}\left( x \right) $ .
We know that $ {{\tan }^{-1}}\left( a \right)-{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{y} \right)={{\tan }^{-1}}\left( \dfrac{3-x}{1+3x} \right) $ .
$ \Rightarrow \dfrac{1}{y}=\dfrac{3-x}{1+3x} $ .
$ \Rightarrow y=\dfrac{1+3x}{3-x} $ ---(1).
According to the problem, we need to find the positive integral solutions for $ \left( x,y \right) $ . From equation (1), we can see that the value of y is undefined when $ x=3 $ and negative when the $ x > 3 $ .
So, the only integer values possible for x is 1 and 2.
Now, let us find the value of y when $ x=1 $ .
So, we have $ y=\dfrac{1+3\left( 1 \right)}{3-1} $ .
$ \Rightarrow y=\dfrac{1+3}{2} $ .
$ \Rightarrow y=\dfrac{4}{2}=2 $ .
So, we have found one of the positive integral solutions as $ \left( 1,2 \right) $ .
Now, let us find the value of y when $ x=2 $ .
So, we have $ y=\dfrac{1+3\left( 2 \right)}{3-2} $ .
$ \Rightarrow y=\dfrac{1+6}{1} $ .
$ \Rightarrow y=7 $ .
So, we have found one of the positive integral solutions as $ \left( 2,7 \right) $ .
We have found the number of positive integral solutions as 2.
$ \therefore $ The no. of positive integral solutions $ \left( x,y \right) $ of the equation $ {{\tan }^{-1}}\left( x \right)+{{\cot }^{-1}}\left( y \right)={{\tan }^{-1}}\left( 3 \right) $ is 2.
Note:
We should keep in mind that infinity will not be included in the solution set for y as the given equation will not be satisfied on substituting it. We can also make use of the fact $ {{\cot }^{-1}}\left( y \right)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( y \right) $ for $ y > 0 $ instead of $ {{\cot }^{-1}}\left( a \right)={{\tan }^{-1}}\left( \dfrac{1}{a} \right) $ to solve the problem. We should not make calculation mistakes while solving this problem. Similarly, we can expect problems to find the integral solutions $ \left( x,y \right) $ for $ {{\left( {{\sin }^{-1}}\left( x \right) \right)}^{2}}+{{\left( {{\cos }^{-1}}\left( y \right) \right)}^{2}}=\dfrac{{{\pi }^{2}}}{4} $ .
Complete step by step answer:
According to the problem, we are asked to find the total no. of positive integral solutions $ \left( x,y \right) $ of the equation $ {{\tan }^{-1}}\left( x \right)+{{\cot }^{-1}}\left( y \right)={{\tan }^{-1}}\left( 3 \right) $ .
We have given $ {{\tan }^{-1}}\left( x \right)+{{\cot }^{-1}}\left( y \right)={{\tan }^{-1}}\left( 3 \right) $ .
We know that $ {{\cot }^{-1}}\left( a \right)={{\tan }^{-1}}\left( \dfrac{1}{a} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{y} \right)={{\tan }^{-1}}\left( 3 \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{y} \right)={{\tan }^{-1}}\left( 3 \right)-{{\tan }^{-1}}\left( x \right) $ .
We know that $ {{\tan }^{-1}}\left( a \right)-{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{y} \right)={{\tan }^{-1}}\left( \dfrac{3-x}{1+3x} \right) $ .
$ \Rightarrow \dfrac{1}{y}=\dfrac{3-x}{1+3x} $ .
$ \Rightarrow y=\dfrac{1+3x}{3-x} $ ---(1).
According to the problem, we need to find the positive integral solutions for $ \left( x,y \right) $ . From equation (1), we can see that the value of y is undefined when $ x=3 $ and negative when the $ x > 3 $ .
So, the only integer values possible for x is 1 and 2.
Now, let us find the value of y when $ x=1 $ .
So, we have $ y=\dfrac{1+3\left( 1 \right)}{3-1} $ .
$ \Rightarrow y=\dfrac{1+3}{2} $ .
$ \Rightarrow y=\dfrac{4}{2}=2 $ .
So, we have found one of the positive integral solutions as $ \left( 1,2 \right) $ .
Now, let us find the value of y when $ x=2 $ .
So, we have $ y=\dfrac{1+3\left( 2 \right)}{3-2} $ .
$ \Rightarrow y=\dfrac{1+6}{1} $ .
$ \Rightarrow y=7 $ .
So, we have found one of the positive integral solutions as $ \left( 2,7 \right) $ .
We have found the number of positive integral solutions as 2.
$ \therefore $ The no. of positive integral solutions $ \left( x,y \right) $ of the equation $ {{\tan }^{-1}}\left( x \right)+{{\cot }^{-1}}\left( y \right)={{\tan }^{-1}}\left( 3 \right) $ is 2.
Note:
We should keep in mind that infinity will not be included in the solution set for y as the given equation will not be satisfied on substituting it. We can also make use of the fact $ {{\cot }^{-1}}\left( y \right)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( y \right) $ for $ y > 0 $ instead of $ {{\cot }^{-1}}\left( a \right)={{\tan }^{-1}}\left( \dfrac{1}{a} \right) $ to solve the problem. We should not make calculation mistakes while solving this problem. Similarly, we can expect problems to find the integral solutions $ \left( x,y \right) $ for $ {{\left( {{\sin }^{-1}}\left( x \right) \right)}^{2}}+{{\left( {{\cos }^{-1}}\left( y \right) \right)}^{2}}=\dfrac{{{\pi }^{2}}}{4} $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

