
The net reaction of the disc on the block is:
$ \left( A \right)m{\omega ^2}R\sin \omega t\hat j - mg\hat k \\
\left( B \right)\dfrac{1}{2}m{\omega ^2}R\left( {{e^{\omega t}} - {e^{ - \omega t}}} \right)\hat j + mg\hat k \\
\left( C \right)\dfrac{1}{2}m{\omega ^2}R\left( {{e^{2\omega t}} - {e^{ - 2\omega t}}} \right)\hat j + mg\hat k \\
\left( D \right) - m{\omega ^2}R\cos \omega t\hat j - mg\hat k \\ $

Answer
417.9k+ views
Hint : In order to solve this question, we are going to first analyze the figure that is given in the question, after that the expression for the rotational force is written, in which the value of the rotational force is put and simplified for the internal force on the disc, after which the reaction force is calculated.
The rotational force on the disc is given by
$ {F_{rot}} = {F_{in}} + 2m\left( {{v_{rot}}\hat i} \right) \times \omega \hat k + m\left( {\omega \hat k \times r\hat i} \right) \times \omega \hat k $
The rotational force is,
$ {F_{rot}} = m{\omega ^2}r\hat i $ .
Complete Step By Step Answer:
As we can see in the figure, we are given with a disc of radius $ R $ , which is rotating with the angular velocity equal to $ \omega $ ,
The block of mass, $ m $ , is given at a distance $ \dfrac{R}{2} $ from the centre of the radius.
The rotational force of the disc depends on the internal force present on the disc. It is given by the equation,
$ {F_{rot}} = {F_{in}} + 2m\left( {{v_{rot}}\hat i} \right) \times \omega \hat k + m\left( {\omega \hat k \times r\hat i} \right) \times \omega \hat k $
We know that the general expression for the rotational force is,
$ {F_{rot}} = m{\omega ^2}r\hat i $
Putting this value in the above equation, we get
$ m{\omega ^2}r\hat i = {F_{in}} + 2m{v_{rot}}\omega \left( { - \hat j} \right) + m{\omega ^2}r\hat i $
Hence, simplifying this equation, we get the value of internal force equal to
$ {F_{in}} = 2m{v_{rot}}\omega \hat j $
The radius $ r $ can be written as
$ r = \dfrac{R}{4}\left( {{e^{\omega t}} - {e^{ - \omega t}}} \right) $
The velocity can be found by differentiating the above equation,
$ {v_r} = \dfrac{{dr}}{{dt}} = \dfrac{{R\omega }}{4}\left( {{e^{\omega t}} - {e^{ - \omega t}}} \right) $
Putting this value of velocity in the expression for the internal force, we get
$ {F_{in}} = \dfrac{{2m{\omega ^2}R}}{4}\left( {{e^{\omega t}} - {e^{ - \omega t}}} \right)\hat j \\
\Rightarrow {F_{in}} = \dfrac{{m{\omega ^2}R}}{2}\left( {{e^{\omega t}} - {e^{ - \omega t}}} \right)\hat j \\ $
Thus, the reaction force becomes,
$ {F_{reaction}} = \dfrac{{m{\omega ^2}R}}{2}\left( {{e^{\omega t}} - {e^{ - \omega t}}} \right)\hat j + mg\hat k $
Hence, the option $ \left( B \right)\dfrac{1}{2}m{\omega ^2}R\left( {{e^{\omega t}} - {e^{ - \omega t}}} \right)\hat j + mg\hat k $ is the correct answer.
Note :
The force of rotation on a disc depends on the internal force present inside the disc, the velocity of the rotation of the disc and the moment of inertia of a disc. These three quantities form an expression which is further simplified in order to get the internal force in the disc which along with gravity gives reaction force.
The rotational force on the disc is given by
$ {F_{rot}} = {F_{in}} + 2m\left( {{v_{rot}}\hat i} \right) \times \omega \hat k + m\left( {\omega \hat k \times r\hat i} \right) \times \omega \hat k $
The rotational force is,
$ {F_{rot}} = m{\omega ^2}r\hat i $ .
Complete Step By Step Answer:
As we can see in the figure, we are given with a disc of radius $ R $ , which is rotating with the angular velocity equal to $ \omega $ ,
The block of mass, $ m $ , is given at a distance $ \dfrac{R}{2} $ from the centre of the radius.
The rotational force of the disc depends on the internal force present on the disc. It is given by the equation,
$ {F_{rot}} = {F_{in}} + 2m\left( {{v_{rot}}\hat i} \right) \times \omega \hat k + m\left( {\omega \hat k \times r\hat i} \right) \times \omega \hat k $
We know that the general expression for the rotational force is,
$ {F_{rot}} = m{\omega ^2}r\hat i $
Putting this value in the above equation, we get
$ m{\omega ^2}r\hat i = {F_{in}} + 2m{v_{rot}}\omega \left( { - \hat j} \right) + m{\omega ^2}r\hat i $
Hence, simplifying this equation, we get the value of internal force equal to
$ {F_{in}} = 2m{v_{rot}}\omega \hat j $
The radius $ r $ can be written as
$ r = \dfrac{R}{4}\left( {{e^{\omega t}} - {e^{ - \omega t}}} \right) $
The velocity can be found by differentiating the above equation,
$ {v_r} = \dfrac{{dr}}{{dt}} = \dfrac{{R\omega }}{4}\left( {{e^{\omega t}} - {e^{ - \omega t}}} \right) $
Putting this value of velocity in the expression for the internal force, we get
$ {F_{in}} = \dfrac{{2m{\omega ^2}R}}{4}\left( {{e^{\omega t}} - {e^{ - \omega t}}} \right)\hat j \\
\Rightarrow {F_{in}} = \dfrac{{m{\omega ^2}R}}{2}\left( {{e^{\omega t}} - {e^{ - \omega t}}} \right)\hat j \\ $
Thus, the reaction force becomes,
$ {F_{reaction}} = \dfrac{{m{\omega ^2}R}}{2}\left( {{e^{\omega t}} - {e^{ - \omega t}}} \right)\hat j + mg\hat k $
Hence, the option $ \left( B \right)\dfrac{1}{2}m{\omega ^2}R\left( {{e^{\omega t}} - {e^{ - \omega t}}} \right)\hat j + mg\hat k $ is the correct answer.
Note :
The force of rotation on a disc depends on the internal force present inside the disc, the velocity of the rotation of the disc and the moment of inertia of a disc. These three quantities form an expression which is further simplified in order to get the internal force in the disc which along with gravity gives reaction force.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
