
The multiplicative inverse of matrix \[\left[ {\begin{array}{*{20}{c}}
2&1 \\
7&4
\end{array}} \right]\] is
A. \[\left[ {\begin{array}{*{20}{c}}
4&{ - 1} \\
7&2
\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}
4&{ - 1} \\
{ - 7}&2
\end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}}
4&{ - 1} \\
{ - 7}&{ - 2}
\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}
{ - 4}&{ - 1} \\
7&{ - 2}
\end{array}} \right]\]
Answer
510.9k+ views
Hint: First, we will use the formula of the inverse of the matrix \[A = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\] by, \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]\], where \[\left| A \right|\] is the determinant\[A\]. Then we will find the value of \[a\], \[b\], \[c\] and \[d\] from the given matrix \[A\] and then substitute them in the formula of inverse of matrix to find the required value.
Complete step by step answer:
We are given that the matrix is \[\left[ {\begin{array}{*{20}{c}}
2&1 \\
7&4
\end{array}} \right]\].
We know that the inverse of the matrix \[A = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\] by using the formula, \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]\], where \[\left| A \right|\] is the determinant of \[A\].
Finding the value of \[a\], \[b\], \[c\] and \[d\] from the given matrix \[A\], we get
\[ \Rightarrow a = 2\]
\[ \Rightarrow b = 1\]
\[ \Rightarrow c = 7\]
\[ \Rightarrow d = 4\]
Then we will compute the value of determinant of \[A\] using the above values, we get
\[
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&1 \\
7&4
\end{array}} \right| \\
\Rightarrow \left| A \right| = 8 - 7 \\
\Rightarrow \left| A \right| = 1 \\
\]
Substituting the above values of the determinant of A, \[a\], \[b\], \[c\] and \[d\] in the formula of inverse of matrix, we get
\[
\Rightarrow {A^{ - 1}} = \dfrac{1}{1}\left[ {\begin{array}{*{20}{c}}
4&{ - 1} \\
{ - 7}&2
\end{array}} \right] \\
\Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
4&{ - 1} \\
{ - 7}&2
\end{array}} \right] \\
\]
Hence, option B is correct.
Note: In these types of questions, the key concept is to find the inverse by putting the values in the formula of inverse. Students should know that the matrix \[\left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]\] is the adjoint matrix of \[A\]. We can remember this matrix to save some time in the \[2 \times 2\] matrix but we have to compute the value of \[adjA\] in the matrix more than 2 rows and 2 columns. When a student knows the formula of inverse, the solution is very simple and easy.
a&b \\
c&d
\end{array}} \right]\] by, \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]\], where \[\left| A \right|\] is the determinant\[A\]. Then we will find the value of \[a\], \[b\], \[c\] and \[d\] from the given matrix \[A\] and then substitute them in the formula of inverse of matrix to find the required value.
Complete step by step answer:
We are given that the matrix is \[\left[ {\begin{array}{*{20}{c}}
2&1 \\
7&4
\end{array}} \right]\].
We know that the inverse of the matrix \[A = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\] by using the formula, \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]\], where \[\left| A \right|\] is the determinant of \[A\].
Finding the value of \[a\], \[b\], \[c\] and \[d\] from the given matrix \[A\], we get
\[ \Rightarrow a = 2\]
\[ \Rightarrow b = 1\]
\[ \Rightarrow c = 7\]
\[ \Rightarrow d = 4\]
Then we will compute the value of determinant of \[A\] using the above values, we get
\[
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&1 \\
7&4
\end{array}} \right| \\
\Rightarrow \left| A \right| = 8 - 7 \\
\Rightarrow \left| A \right| = 1 \\
\]
Substituting the above values of the determinant of A, \[a\], \[b\], \[c\] and \[d\] in the formula of inverse of matrix, we get
\[
\Rightarrow {A^{ - 1}} = \dfrac{1}{1}\left[ {\begin{array}{*{20}{c}}
4&{ - 1} \\
{ - 7}&2
\end{array}} \right] \\
\Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
4&{ - 1} \\
{ - 7}&2
\end{array}} \right] \\
\]
Hence, option B is correct.
Note: In these types of questions, the key concept is to find the inverse by putting the values in the formula of inverse. Students should know that the matrix \[\left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]\] is the adjoint matrix of \[A\]. We can remember this matrix to save some time in the \[2 \times 2\] matrix but we have to compute the value of \[adjA\] in the matrix more than 2 rows and 2 columns. When a student knows the formula of inverse, the solution is very simple and easy.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
