
The modulus of $\sqrt {2i} - \sqrt { - 2i} $ is
$
(a){\text{ 2}} \\
(b){\text{ }}\sqrt 2 \\
(c){\text{ 0}} \\
(d){\text{ 2}}\sqrt 2 \\
$
Answer
613.8k+ views
Hint: In this question write the negative sign present inside the square root as $i$ because $i = \sqrt { - 1} $. Then take $\sqrt i $ common, and substitute it as $\sqrt i = a + ib$, simple algebraic manipulations will help evaluation of the given complex number.
Complete step-by-step answer:
Given expression
$\sqrt {2i} - \sqrt { - 2i} $
Now as we know in complex $\left[ { - 1 = {i^2}} \right]$
$ \Rightarrow \sqrt {2i} - \sqrt { - 2i} = \sqrt {2i} - \sqrt {{i^2}2i} $
$ \Rightarrow \sqrt {2i} - \sqrt { - 2i} = \sqrt {2i} - \sqrt {{i^2}2i} = \sqrt {2i} - i\sqrt {2i} = \sqrt 2 \sqrt i \left( {1 - i} \right)$..................... (a)
Now let$\sqrt i = a + ib$............................ (1)
Squaring on both sides we have,
$i = {\left( {a + ib} \right)^2} = {a^2} + {i^2}{b^2} + 2iab = {a^2} - {b^2} + 2iab$
Now compare real and imaginary terms we have,
$ \Rightarrow {a^2} - {b^2} = 0$............................. (2)
And $2ab = 1$.............................. (3)
Now from equation (2) we have
$ \Rightarrow {a^2} = {b^2}$
$ \Rightarrow a = b$....................... (4)
Now from equation (3) we have,
$ \Rightarrow 2{a^2} = 1$
$ \Rightarrow a = \pm \dfrac{1}{{\sqrt 2 }}$
Now from equation (4) we have,
$ \Rightarrow a = b = \pm \dfrac{1}{{\sqrt 2 }}$
Now from equation (1) we have,
$ \Rightarrow \sqrt i = \pm \dfrac{1}{{\sqrt 2 }}\left( {1 + i} \right)$
Now from equation (a) we have,
$ \Rightarrow \sqrt {2i} - \sqrt { - 2i} = \sqrt 2 \sqrt i \left( {1 - i} \right) = \sqrt 2 \times \left( { \pm \dfrac{1}{{\sqrt 2 }}\left( {1 + i} \right)} \right)\left( {1 - i} \right)$
$ \Rightarrow \sqrt {2i} - \sqrt { - 2i} = \pm \left( {1 + i} \right)\left( {1 - i} \right) = \pm \left( {1 - {i^2}} \right)$
$\left[ {\because - 1 = {i^2}} \right]$
$ \Rightarrow \sqrt {2i} - \sqrt { - 2i} = \pm \left( {1 - \left( { - 1} \right)} \right) = \pm 2$
Now we have to find out the modulus of $\sqrt {2i} - \sqrt { - 2i} $
$ \Rightarrow \left| {\sqrt {2i} - \sqrt { - 2i} } \right| = \left| { \pm 2} \right| = 2$
So this is the required answer.
Hence option (A) is correct.
Note: It’s important to understand the physical significance of the modulus of a complex number. It is the length of the directed line segment drawn from the origin of the complex plane to the point (a, b) where a is the real part and b is the imaginary part of any complex number a+ ib.
Complete step-by-step answer:
Given expression
$\sqrt {2i} - \sqrt { - 2i} $
Now as we know in complex $\left[ { - 1 = {i^2}} \right]$
$ \Rightarrow \sqrt {2i} - \sqrt { - 2i} = \sqrt {2i} - \sqrt {{i^2}2i} $
$ \Rightarrow \sqrt {2i} - \sqrt { - 2i} = \sqrt {2i} - \sqrt {{i^2}2i} = \sqrt {2i} - i\sqrt {2i} = \sqrt 2 \sqrt i \left( {1 - i} \right)$..................... (a)
Now let$\sqrt i = a + ib$............................ (1)
Squaring on both sides we have,
$i = {\left( {a + ib} \right)^2} = {a^2} + {i^2}{b^2} + 2iab = {a^2} - {b^2} + 2iab$
Now compare real and imaginary terms we have,
$ \Rightarrow {a^2} - {b^2} = 0$............................. (2)
And $2ab = 1$.............................. (3)
Now from equation (2) we have
$ \Rightarrow {a^2} = {b^2}$
$ \Rightarrow a = b$....................... (4)
Now from equation (3) we have,
$ \Rightarrow 2{a^2} = 1$
$ \Rightarrow a = \pm \dfrac{1}{{\sqrt 2 }}$
Now from equation (4) we have,
$ \Rightarrow a = b = \pm \dfrac{1}{{\sqrt 2 }}$
Now from equation (1) we have,
$ \Rightarrow \sqrt i = \pm \dfrac{1}{{\sqrt 2 }}\left( {1 + i} \right)$
Now from equation (a) we have,
$ \Rightarrow \sqrt {2i} - \sqrt { - 2i} = \sqrt 2 \sqrt i \left( {1 - i} \right) = \sqrt 2 \times \left( { \pm \dfrac{1}{{\sqrt 2 }}\left( {1 + i} \right)} \right)\left( {1 - i} \right)$
$ \Rightarrow \sqrt {2i} - \sqrt { - 2i} = \pm \left( {1 + i} \right)\left( {1 - i} \right) = \pm \left( {1 - {i^2}} \right)$
$\left[ {\because - 1 = {i^2}} \right]$
$ \Rightarrow \sqrt {2i} - \sqrt { - 2i} = \pm \left( {1 - \left( { - 1} \right)} \right) = \pm 2$
Now we have to find out the modulus of $\sqrt {2i} - \sqrt { - 2i} $
$ \Rightarrow \left| {\sqrt {2i} - \sqrt { - 2i} } \right| = \left| { \pm 2} \right| = 2$
So this is the required answer.
Hence option (A) is correct.
Note: It’s important to understand the physical significance of the modulus of a complex number. It is the length of the directed line segment drawn from the origin of the complex plane to the point (a, b) where a is the real part and b is the imaginary part of any complex number a+ ib.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

