Answer
Verified
412.5k+ views
Hint:
Here, we will first convert all these functions in terms of the sine and cosine. Then we will add them together and simplify it further to find the minimum value of the sum. Trigonometric ratios are defined as the ratios of any two sides of a right angled triangle.
Formula Used:
We will use the following Formula:
1) Trigonometric ratio:\[\tan x = \dfrac{{\sin x}}{{\cos x}};\sec x = \dfrac{1}{{\cos x}};\cos ecx = \dfrac{1}{{\sin x}};\cot x = \dfrac{{\cos x}}{{\sin x}}\]
2) Trigonometric identities: \[{\sin ^2}x + {\cos ^2}x = 1\]
3) The square of the sum of two numbers is given by the formula: \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
4) The difference of square of two numbers is given by the algebraic identity \[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\]
5) Trigonometric formula: \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
6) \[\left| x \right| = \left\{ \begin{array}{l}x,{\rm{ }}if{\rm{ }}x \ge 0\\ - x,{\rm{ }}if{\rm{ }}x < 0\end{array} \right.\]
Complete step by step solution:
We are given with a trigonometric function \[\left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right|\]
Let \[\left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right| = y\]
Now, we have to represent all the terms in terms of sine and cosine.
Now, substituting \[\tan x = \dfrac{{\sin x}}{{\cos x}},\sec x = \dfrac{1}{{\cos x}},\cos ecx = \dfrac{1}{{\sin x}}\] and \[\cot x = \dfrac{{\cos x}}{{\sin x}}\] in the given expression, we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{\sin x}}{{\cos x}} + \dfrac{1}{{\cos x}} + \dfrac{1}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}}\]
By grouping the terms and taking L.C.M., we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{\sin x}}{{\cos x}} + \dfrac{{\cos x}}{{\sin x}} + \dfrac{1}{{\sin x}} + \dfrac{1}{{\cos x}}\]
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{\sin x}}{{\cos x}} \times \dfrac{{\sin x}}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}} \times \dfrac{{\cos x}}{{\cos x}} + \dfrac{1}{{\sin x}} \times \dfrac{{\cos x}}{{\cos x}} + \dfrac{1}{{\cos x}} \times \dfrac{{\sin x}}{{\sin x}}\]
Adding the like terms, we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{\cos x\sin x}} + \dfrac{{\cos x + \sin x}}{{\cos x\sin x}}\]
Now, by using the trigonometric identity \[{\sin ^2}x + {\cos ^2}x = 1\], we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\cos x\sin x}}\] ………………………..\[\left( 1 \right)\]
Using the algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\], we can write
\[{\left( {\sin x + \cos x} \right)^2} = {\sin ^2}x + {\cos ^2}x + 2\sin x\cos x\]
\[ \Rightarrow {\left( {\sin x + \cos x} \right)^2} = 1 + 2\sin x\cos x\]
Rewriting the equation, we get
\[ \Rightarrow \sin x\cos x = \dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}\]
Substituting \[\sin x\cos x = \dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}\] in equation \[\left( 1 \right)\], we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}}\]
Substituting \[\sin x + \cos x = t\] in the above equation, we get
\[ \Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{{1 + t}}{{\dfrac{{{t^2} - 1}}{2}}}\]
\[ \Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{{2\left( {1 + t} \right)}}{{{t^2} - 1}}\]
The difference of square of two numbers is given by the algebraic identity \[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\]
\[ \Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{{2\left( {1 + t} \right)}}{{\left( {1 + t} \right)\left( {t - 1} \right)}}\]
\[ \Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{2}{{\left( {t - 1} \right)}}\]………………………..\[\left( 2 \right)\]
We know that \[t = \sin x + \cos x\].
Multiplying and dividing by \[\sqrt 2 \]on both the sides, we get
\[ \Rightarrow t = \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\sin x + \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\cos x = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin x + \dfrac{1}{{\sqrt 2 }}\cos x} \right)\]
\[ \Rightarrow t = \sqrt 2 \left( {\cos \dfrac{\pi }{4}\sin x + \sin \dfrac{\pi }{4}\cos x} \right)\]
Now, by using trigonometric formula \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\], we get
\[ \Rightarrow t = \sqrt 2 \left( {\sin \left( {x + \dfrac{\pi }{4}} \right)} \right)\]
Thus , by this identity, we will get \[ - \sqrt 2 \le t \le \sqrt 2 \] .
Substituting \[y = \left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right| = t + \dfrac{2}{{\left( {t - 1} \right)}}\]
\[ \Rightarrow y = \left| {t + \dfrac{2}{{t - 1}}} \right| = \left| {t - 1 + \dfrac{2}{{t - 1}} + 1} \right|\]
Now, by using the property \[\left| x \right| = \left\{ \begin{array}{l}x,{\rm{ }}if{\rm{ }}x \ge 0\\ - x,{\rm{ }}if{\rm{ }}x < 0\end{array} \right.\] , we get
Now, considering \[1 < a < \sqrt 2 \Rightarrow 0 < a - 1\]in this case the value is positive.
\[ \Rightarrow y = t - 1 + \dfrac{2}{{t - 1}} + 1\]
We know that Arithmetic mean\[ \ge \] Geometric mean. Thus, we will get
\[ \Rightarrow \dfrac{{t - 1 + \dfrac{2}{{t - 1}}}}{2} \ge \sqrt {\left( {t - 1} \right) \times \dfrac{2}{{t - 1}}} \]
\[ \Rightarrow \dfrac{{t - 1 + \dfrac{2}{{t - 1}}}}{2} \ge \sqrt 2 \Rightarrow t - 1 + \dfrac{2}{{t - 1}} \ge 2\sqrt 2 \]
\[ \Rightarrow t - 1 + \dfrac{2}{{t - 1}} + 1 \ge 2\sqrt 2 + 1\]
Thus, we get
\[ \Rightarrow y \ge 2\sqrt 2 + 1\] which is positive…………………………………………………..\[\left( 3 \right)\]
Now, considering \[ - 1 < a < \sqrt 2 \Rightarrow a - 1 < 0\] in this case the value is negative
\[ \Rightarrow y = t - 1 + \dfrac{2}{{t - 1}} + 1\]
\[ \Rightarrow y = \left| { - 1\left( {1 - t + \dfrac{2}{{1 - t}} - 1} \right)} \right|\]
\[ \Rightarrow y = \left| { - 1} \right|\left| {\left( {1 - t + \dfrac{2}{{1 - t}} - 1} \right)} \right|\]
\[ \Rightarrow y = \left| {\left( {1 - t + \dfrac{2}{{1 - t}} - 1} \right)} \right|\]
We know that Arithmetic mean \[ \ge \] Geometric mean. Thus, we will get
\[ \Rightarrow \dfrac{{1 - t + \dfrac{2}{{1 - t}}}}{2} \ge \sqrt {\left( {1 - t} \right) \times \dfrac{2}{{1 - t}}} \]
\[ \Rightarrow \dfrac{{1 - t + \dfrac{2}{{1 - t}}}}{2} \ge \sqrt 2 \Rightarrow 1 - t + \dfrac{2}{{1 - t}} \ge 2\sqrt 2 \]
\[ \Rightarrow 1 - t + \dfrac{2}{{1 - t}} - 1 \ge 2\sqrt 2 - 1\]
Thus, we get
\[ \Rightarrow y \ge 2\sqrt 2 - 1\] which is positive………………………………………………\[\left( 4 \right)\]
Since the value has to be minimum, from \[\left( 3 \right)\] and \[\left( 4 \right)\], we get \[2\sqrt 2 - 1 < 2\sqrt 2 + 1\]
Thus the minimum value is \[2\sqrt 2 - 1\]
Therefore, the minimum value of \[\left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right|\] is \[2\sqrt 2 - 1\].
Note:
We can find the limits by using the trigonometric identity and values. So, it becomes important to remember all the basic identities and values. We have found the minimum value using the relation between arithmetic mean and geometric mean. Arithmetic mean or average is defined as the sum of numbers divided by the quantity of numbers, Geometric mean of two numbers is defined as the square root of their product. We should also remember that the Arithmetic mean should never be less than the geometric mean.
Here, we will first convert all these functions in terms of the sine and cosine. Then we will add them together and simplify it further to find the minimum value of the sum. Trigonometric ratios are defined as the ratios of any two sides of a right angled triangle.
Formula Used:
We will use the following Formula:
1) Trigonometric ratio:\[\tan x = \dfrac{{\sin x}}{{\cos x}};\sec x = \dfrac{1}{{\cos x}};\cos ecx = \dfrac{1}{{\sin x}};\cot x = \dfrac{{\cos x}}{{\sin x}}\]
2) Trigonometric identities: \[{\sin ^2}x + {\cos ^2}x = 1\]
3) The square of the sum of two numbers is given by the formula: \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
4) The difference of square of two numbers is given by the algebraic identity \[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\]
5) Trigonometric formula: \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
6) \[\left| x \right| = \left\{ \begin{array}{l}x,{\rm{ }}if{\rm{ }}x \ge 0\\ - x,{\rm{ }}if{\rm{ }}x < 0\end{array} \right.\]
Complete step by step solution:
We are given with a trigonometric function \[\left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right|\]
Let \[\left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right| = y\]
Now, we have to represent all the terms in terms of sine and cosine.
Now, substituting \[\tan x = \dfrac{{\sin x}}{{\cos x}},\sec x = \dfrac{1}{{\cos x}},\cos ecx = \dfrac{1}{{\sin x}}\] and \[\cot x = \dfrac{{\cos x}}{{\sin x}}\] in the given expression, we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{\sin x}}{{\cos x}} + \dfrac{1}{{\cos x}} + \dfrac{1}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}}\]
By grouping the terms and taking L.C.M., we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{\sin x}}{{\cos x}} + \dfrac{{\cos x}}{{\sin x}} + \dfrac{1}{{\sin x}} + \dfrac{1}{{\cos x}}\]
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{\sin x}}{{\cos x}} \times \dfrac{{\sin x}}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}} \times \dfrac{{\cos x}}{{\cos x}} + \dfrac{1}{{\sin x}} \times \dfrac{{\cos x}}{{\cos x}} + \dfrac{1}{{\cos x}} \times \dfrac{{\sin x}}{{\sin x}}\]
Adding the like terms, we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{\cos x\sin x}} + \dfrac{{\cos x + \sin x}}{{\cos x\sin x}}\]
Now, by using the trigonometric identity \[{\sin ^2}x + {\cos ^2}x = 1\], we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\cos x\sin x}}\] ………………………..\[\left( 1 \right)\]
Using the algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\], we can write
\[{\left( {\sin x + \cos x} \right)^2} = {\sin ^2}x + {\cos ^2}x + 2\sin x\cos x\]
\[ \Rightarrow {\left( {\sin x + \cos x} \right)^2} = 1 + 2\sin x\cos x\]
Rewriting the equation, we get
\[ \Rightarrow \sin x\cos x = \dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}\]
Substituting \[\sin x\cos x = \dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}\] in equation \[\left( 1 \right)\], we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}}\]
Substituting \[\sin x + \cos x = t\] in the above equation, we get
\[ \Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{{1 + t}}{{\dfrac{{{t^2} - 1}}{2}}}\]
\[ \Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{{2\left( {1 + t} \right)}}{{{t^2} - 1}}\]
The difference of square of two numbers is given by the algebraic identity \[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\]
\[ \Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{{2\left( {1 + t} \right)}}{{\left( {1 + t} \right)\left( {t - 1} \right)}}\]
\[ \Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{2}{{\left( {t - 1} \right)}}\]………………………..\[\left( 2 \right)\]
We know that \[t = \sin x + \cos x\].
Multiplying and dividing by \[\sqrt 2 \]on both the sides, we get
\[ \Rightarrow t = \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\sin x + \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\cos x = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin x + \dfrac{1}{{\sqrt 2 }}\cos x} \right)\]
\[ \Rightarrow t = \sqrt 2 \left( {\cos \dfrac{\pi }{4}\sin x + \sin \dfrac{\pi }{4}\cos x} \right)\]
Now, by using trigonometric formula \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\], we get
\[ \Rightarrow t = \sqrt 2 \left( {\sin \left( {x + \dfrac{\pi }{4}} \right)} \right)\]
Thus , by this identity, we will get \[ - \sqrt 2 \le t \le \sqrt 2 \] .
Substituting \[y = \left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right| = t + \dfrac{2}{{\left( {t - 1} \right)}}\]
\[ \Rightarrow y = \left| {t + \dfrac{2}{{t - 1}}} \right| = \left| {t - 1 + \dfrac{2}{{t - 1}} + 1} \right|\]
Now, by using the property \[\left| x \right| = \left\{ \begin{array}{l}x,{\rm{ }}if{\rm{ }}x \ge 0\\ - x,{\rm{ }}if{\rm{ }}x < 0\end{array} \right.\] , we get
Now, considering \[1 < a < \sqrt 2 \Rightarrow 0 < a - 1\]in this case the value is positive.
\[ \Rightarrow y = t - 1 + \dfrac{2}{{t - 1}} + 1\]
We know that Arithmetic mean\[ \ge \] Geometric mean. Thus, we will get
\[ \Rightarrow \dfrac{{t - 1 + \dfrac{2}{{t - 1}}}}{2} \ge \sqrt {\left( {t - 1} \right) \times \dfrac{2}{{t - 1}}} \]
\[ \Rightarrow \dfrac{{t - 1 + \dfrac{2}{{t - 1}}}}{2} \ge \sqrt 2 \Rightarrow t - 1 + \dfrac{2}{{t - 1}} \ge 2\sqrt 2 \]
\[ \Rightarrow t - 1 + \dfrac{2}{{t - 1}} + 1 \ge 2\sqrt 2 + 1\]
Thus, we get
\[ \Rightarrow y \ge 2\sqrt 2 + 1\] which is positive…………………………………………………..\[\left( 3 \right)\]
Now, considering \[ - 1 < a < \sqrt 2 \Rightarrow a - 1 < 0\] in this case the value is negative
\[ \Rightarrow y = t - 1 + \dfrac{2}{{t - 1}} + 1\]
\[ \Rightarrow y = \left| { - 1\left( {1 - t + \dfrac{2}{{1 - t}} - 1} \right)} \right|\]
\[ \Rightarrow y = \left| { - 1} \right|\left| {\left( {1 - t + \dfrac{2}{{1 - t}} - 1} \right)} \right|\]
\[ \Rightarrow y = \left| {\left( {1 - t + \dfrac{2}{{1 - t}} - 1} \right)} \right|\]
We know that Arithmetic mean \[ \ge \] Geometric mean. Thus, we will get
\[ \Rightarrow \dfrac{{1 - t + \dfrac{2}{{1 - t}}}}{2} \ge \sqrt {\left( {1 - t} \right) \times \dfrac{2}{{1 - t}}} \]
\[ \Rightarrow \dfrac{{1 - t + \dfrac{2}{{1 - t}}}}{2} \ge \sqrt 2 \Rightarrow 1 - t + \dfrac{2}{{1 - t}} \ge 2\sqrt 2 \]
\[ \Rightarrow 1 - t + \dfrac{2}{{1 - t}} - 1 \ge 2\sqrt 2 - 1\]
Thus, we get
\[ \Rightarrow y \ge 2\sqrt 2 - 1\] which is positive………………………………………………\[\left( 4 \right)\]
Since the value has to be minimum, from \[\left( 3 \right)\] and \[\left( 4 \right)\], we get \[2\sqrt 2 - 1 < 2\sqrt 2 + 1\]
Thus the minimum value is \[2\sqrt 2 - 1\]
Therefore, the minimum value of \[\left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right|\] is \[2\sqrt 2 - 1\].
Note:
We can find the limits by using the trigonometric identity and values. So, it becomes important to remember all the basic identities and values. We have found the minimum value using the relation between arithmetic mean and geometric mean. Arithmetic mean or average is defined as the sum of numbers divided by the quantity of numbers, Geometric mean of two numbers is defined as the square root of their product. We should also remember that the Arithmetic mean should never be less than the geometric mean.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Write a letter to the principal requesting him to grant class 10 english CBSE
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE