The minimum value of \[\left| {\sin x + \cos x + \tan x + \sec x + \cos ec x + \cot x} \right|\] is
A) \[2\sqrt 2 - 1\]
B) \[2\sqrt 2 + 1\]
C) \[\sqrt 2 - 1\]
D) \[\sqrt 2 + 1\]
Answer
Verified
450.3k+ views
Hint:
Here, we will first convert all these functions in terms of the sine and cosine. Then we will add them together and simplify it further to find the minimum value of the sum. Trigonometric ratios are defined as the ratios of any two sides of a right angled triangle.
Formula Used:
We will use the following Formula:
1) Trigonometric ratio:\[\tan x = \dfrac{{\sin x}}{{\cos x}};\sec x = \dfrac{1}{{\cos x}};\cos ecx = \dfrac{1}{{\sin x}};\cot x = \dfrac{{\cos x}}{{\sin x}}\]
2) Trigonometric identities: \[{\sin ^2}x + {\cos ^2}x = 1\]
3) The square of the sum of two numbers is given by the formula: \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
4) The difference of square of two numbers is given by the algebraic identity \[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\]
5) Trigonometric formula: \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
6) \[\left| x \right| = \left\{ \begin{array}{l}x,{\rm{ }}if{\rm{ }}x \ge 0\\ - x,{\rm{ }}if{\rm{ }}x < 0\end{array} \right.\]
Complete step by step solution:
We are given with a trigonometric function \[\left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right|\]
Let \[\left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right| = y\]
Now, we have to represent all the terms in terms of sine and cosine.
Now, substituting \[\tan x = \dfrac{{\sin x}}{{\cos x}},\sec x = \dfrac{1}{{\cos x}},\cos ecx = \dfrac{1}{{\sin x}}\] and \[\cot x = \dfrac{{\cos x}}{{\sin x}}\] in the given expression, we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{\sin x}}{{\cos x}} + \dfrac{1}{{\cos x}} + \dfrac{1}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}}\]
By grouping the terms and taking L.C.M., we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{\sin x}}{{\cos x}} + \dfrac{{\cos x}}{{\sin x}} + \dfrac{1}{{\sin x}} + \dfrac{1}{{\cos x}}\]
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{\sin x}}{{\cos x}} \times \dfrac{{\sin x}}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}} \times \dfrac{{\cos x}}{{\cos x}} + \dfrac{1}{{\sin x}} \times \dfrac{{\cos x}}{{\cos x}} + \dfrac{1}{{\cos x}} \times \dfrac{{\sin x}}{{\sin x}}\]
Adding the like terms, we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{\cos x\sin x}} + \dfrac{{\cos x + \sin x}}{{\cos x\sin x}}\]
Now, by using the trigonometric identity \[{\sin ^2}x + {\cos ^2}x = 1\], we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\cos x\sin x}}\] ………………………..\[\left( 1 \right)\]
Using the algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\], we can write
\[{\left( {\sin x + \cos x} \right)^2} = {\sin ^2}x + {\cos ^2}x + 2\sin x\cos x\]
\[ \Rightarrow {\left( {\sin x + \cos x} \right)^2} = 1 + 2\sin x\cos x\]
Rewriting the equation, we get
\[ \Rightarrow \sin x\cos x = \dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}\]
Substituting \[\sin x\cos x = \dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}\] in equation \[\left( 1 \right)\], we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}}\]
Substituting \[\sin x + \cos x = t\] in the above equation, we get
\[ \Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{{1 + t}}{{\dfrac{{{t^2} - 1}}{2}}}\]
\[ \Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{{2\left( {1 + t} \right)}}{{{t^2} - 1}}\]
The difference of square of two numbers is given by the algebraic identity \[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\]
\[ \Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{{2\left( {1 + t} \right)}}{{\left( {1 + t} \right)\left( {t - 1} \right)}}\]
\[ \Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{2}{{\left( {t - 1} \right)}}\]………………………..\[\left( 2 \right)\]
We know that \[t = \sin x + \cos x\].
Multiplying and dividing by \[\sqrt 2 \]on both the sides, we get
\[ \Rightarrow t = \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\sin x + \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\cos x = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin x + \dfrac{1}{{\sqrt 2 }}\cos x} \right)\]
\[ \Rightarrow t = \sqrt 2 \left( {\cos \dfrac{\pi }{4}\sin x + \sin \dfrac{\pi }{4}\cos x} \right)\]
Now, by using trigonometric formula \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\], we get
\[ \Rightarrow t = \sqrt 2 \left( {\sin \left( {x + \dfrac{\pi }{4}} \right)} \right)\]
Thus , by this identity, we will get \[ - \sqrt 2 \le t \le \sqrt 2 \] .
Substituting \[y = \left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right| = t + \dfrac{2}{{\left( {t - 1} \right)}}\]
\[ \Rightarrow y = \left| {t + \dfrac{2}{{t - 1}}} \right| = \left| {t - 1 + \dfrac{2}{{t - 1}} + 1} \right|\]
Now, by using the property \[\left| x \right| = \left\{ \begin{array}{l}x,{\rm{ }}if{\rm{ }}x \ge 0\\ - x,{\rm{ }}if{\rm{ }}x < 0\end{array} \right.\] , we get
Now, considering \[1 < a < \sqrt 2 \Rightarrow 0 < a - 1\]in this case the value is positive.
\[ \Rightarrow y = t - 1 + \dfrac{2}{{t - 1}} + 1\]
We know that Arithmetic mean\[ \ge \] Geometric mean. Thus, we will get
\[ \Rightarrow \dfrac{{t - 1 + \dfrac{2}{{t - 1}}}}{2} \ge \sqrt {\left( {t - 1} \right) \times \dfrac{2}{{t - 1}}} \]
\[ \Rightarrow \dfrac{{t - 1 + \dfrac{2}{{t - 1}}}}{2} \ge \sqrt 2 \Rightarrow t - 1 + \dfrac{2}{{t - 1}} \ge 2\sqrt 2 \]
\[ \Rightarrow t - 1 + \dfrac{2}{{t - 1}} + 1 \ge 2\sqrt 2 + 1\]
Thus, we get
\[ \Rightarrow y \ge 2\sqrt 2 + 1\] which is positive…………………………………………………..\[\left( 3 \right)\]
Now, considering \[ - 1 < a < \sqrt 2 \Rightarrow a - 1 < 0\] in this case the value is negative
\[ \Rightarrow y = t - 1 + \dfrac{2}{{t - 1}} + 1\]
\[ \Rightarrow y = \left| { - 1\left( {1 - t + \dfrac{2}{{1 - t}} - 1} \right)} \right|\]
\[ \Rightarrow y = \left| { - 1} \right|\left| {\left( {1 - t + \dfrac{2}{{1 - t}} - 1} \right)} \right|\]
\[ \Rightarrow y = \left| {\left( {1 - t + \dfrac{2}{{1 - t}} - 1} \right)} \right|\]
We know that Arithmetic mean \[ \ge \] Geometric mean. Thus, we will get
\[ \Rightarrow \dfrac{{1 - t + \dfrac{2}{{1 - t}}}}{2} \ge \sqrt {\left( {1 - t} \right) \times \dfrac{2}{{1 - t}}} \]
\[ \Rightarrow \dfrac{{1 - t + \dfrac{2}{{1 - t}}}}{2} \ge \sqrt 2 \Rightarrow 1 - t + \dfrac{2}{{1 - t}} \ge 2\sqrt 2 \]
\[ \Rightarrow 1 - t + \dfrac{2}{{1 - t}} - 1 \ge 2\sqrt 2 - 1\]
Thus, we get
\[ \Rightarrow y \ge 2\sqrt 2 - 1\] which is positive………………………………………………\[\left( 4 \right)\]
Since the value has to be minimum, from \[\left( 3 \right)\] and \[\left( 4 \right)\], we get \[2\sqrt 2 - 1 < 2\sqrt 2 + 1\]
Thus the minimum value is \[2\sqrt 2 - 1\]
Therefore, the minimum value of \[\left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right|\] is \[2\sqrt 2 - 1\].
Note:
We can find the limits by using the trigonometric identity and values. So, it becomes important to remember all the basic identities and values. We have found the minimum value using the relation between arithmetic mean and geometric mean. Arithmetic mean or average is defined as the sum of numbers divided by the quantity of numbers, Geometric mean of two numbers is defined as the square root of their product. We should also remember that the Arithmetic mean should never be less than the geometric mean.
Here, we will first convert all these functions in terms of the sine and cosine. Then we will add them together and simplify it further to find the minimum value of the sum. Trigonometric ratios are defined as the ratios of any two sides of a right angled triangle.
Formula Used:
We will use the following Formula:
1) Trigonometric ratio:\[\tan x = \dfrac{{\sin x}}{{\cos x}};\sec x = \dfrac{1}{{\cos x}};\cos ecx = \dfrac{1}{{\sin x}};\cot x = \dfrac{{\cos x}}{{\sin x}}\]
2) Trigonometric identities: \[{\sin ^2}x + {\cos ^2}x = 1\]
3) The square of the sum of two numbers is given by the formula: \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
4) The difference of square of two numbers is given by the algebraic identity \[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\]
5) Trigonometric formula: \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
6) \[\left| x \right| = \left\{ \begin{array}{l}x,{\rm{ }}if{\rm{ }}x \ge 0\\ - x,{\rm{ }}if{\rm{ }}x < 0\end{array} \right.\]
Complete step by step solution:
We are given with a trigonometric function \[\left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right|\]
Let \[\left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right| = y\]
Now, we have to represent all the terms in terms of sine and cosine.
Now, substituting \[\tan x = \dfrac{{\sin x}}{{\cos x}},\sec x = \dfrac{1}{{\cos x}},\cos ecx = \dfrac{1}{{\sin x}}\] and \[\cot x = \dfrac{{\cos x}}{{\sin x}}\] in the given expression, we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{\sin x}}{{\cos x}} + \dfrac{1}{{\cos x}} + \dfrac{1}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}}\]
By grouping the terms and taking L.C.M., we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{\sin x}}{{\cos x}} + \dfrac{{\cos x}}{{\sin x}} + \dfrac{1}{{\sin x}} + \dfrac{1}{{\cos x}}\]
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{\sin x}}{{\cos x}} \times \dfrac{{\sin x}}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}} \times \dfrac{{\cos x}}{{\cos x}} + \dfrac{1}{{\sin x}} \times \dfrac{{\cos x}}{{\cos x}} + \dfrac{1}{{\cos x}} \times \dfrac{{\sin x}}{{\sin x}}\]
Adding the like terms, we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{\cos x\sin x}} + \dfrac{{\cos x + \sin x}}{{\cos x\sin x}}\]
Now, by using the trigonometric identity \[{\sin ^2}x + {\cos ^2}x = 1\], we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\cos x\sin x}}\] ………………………..\[\left( 1 \right)\]
Using the algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\], we can write
\[{\left( {\sin x + \cos x} \right)^2} = {\sin ^2}x + {\cos ^2}x + 2\sin x\cos x\]
\[ \Rightarrow {\left( {\sin x + \cos x} \right)^2} = 1 + 2\sin x\cos x\]
Rewriting the equation, we get
\[ \Rightarrow \sin x\cos x = \dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}\]
Substituting \[\sin x\cos x = \dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}\] in equation \[\left( 1 \right)\], we get
\[ \Rightarrow y = \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}}\]
Substituting \[\sin x + \cos x = t\] in the above equation, we get
\[ \Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{{1 + t}}{{\dfrac{{{t^2} - 1}}{2}}}\]
\[ \Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{{2\left( {1 + t} \right)}}{{{t^2} - 1}}\]
The difference of square of two numbers is given by the algebraic identity \[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\]
\[ \Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{{2\left( {1 + t} \right)}}{{\left( {1 + t} \right)\left( {t - 1} \right)}}\]
\[ \Rightarrow \sin x + \cos x + \dfrac{{1 + \cos x + \sin x}}{{\dfrac{{{{\left( {\sin x + \cos x} \right)}^2} - 1}}{2}}} = t + \dfrac{2}{{\left( {t - 1} \right)}}\]………………………..\[\left( 2 \right)\]
We know that \[t = \sin x + \cos x\].
Multiplying and dividing by \[\sqrt 2 \]on both the sides, we get
\[ \Rightarrow t = \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\sin x + \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\cos x = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin x + \dfrac{1}{{\sqrt 2 }}\cos x} \right)\]
\[ \Rightarrow t = \sqrt 2 \left( {\cos \dfrac{\pi }{4}\sin x + \sin \dfrac{\pi }{4}\cos x} \right)\]
Now, by using trigonometric formula \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\], we get
\[ \Rightarrow t = \sqrt 2 \left( {\sin \left( {x + \dfrac{\pi }{4}} \right)} \right)\]
Thus , by this identity, we will get \[ - \sqrt 2 \le t \le \sqrt 2 \] .
Substituting \[y = \left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right| = t + \dfrac{2}{{\left( {t - 1} \right)}}\]
\[ \Rightarrow y = \left| {t + \dfrac{2}{{t - 1}}} \right| = \left| {t - 1 + \dfrac{2}{{t - 1}} + 1} \right|\]
Now, by using the property \[\left| x \right| = \left\{ \begin{array}{l}x,{\rm{ }}if{\rm{ }}x \ge 0\\ - x,{\rm{ }}if{\rm{ }}x < 0\end{array} \right.\] , we get
Now, considering \[1 < a < \sqrt 2 \Rightarrow 0 < a - 1\]in this case the value is positive.
\[ \Rightarrow y = t - 1 + \dfrac{2}{{t - 1}} + 1\]
We know that Arithmetic mean\[ \ge \] Geometric mean. Thus, we will get
\[ \Rightarrow \dfrac{{t - 1 + \dfrac{2}{{t - 1}}}}{2} \ge \sqrt {\left( {t - 1} \right) \times \dfrac{2}{{t - 1}}} \]
\[ \Rightarrow \dfrac{{t - 1 + \dfrac{2}{{t - 1}}}}{2} \ge \sqrt 2 \Rightarrow t - 1 + \dfrac{2}{{t - 1}} \ge 2\sqrt 2 \]
\[ \Rightarrow t - 1 + \dfrac{2}{{t - 1}} + 1 \ge 2\sqrt 2 + 1\]
Thus, we get
\[ \Rightarrow y \ge 2\sqrt 2 + 1\] which is positive…………………………………………………..\[\left( 3 \right)\]
Now, considering \[ - 1 < a < \sqrt 2 \Rightarrow a - 1 < 0\] in this case the value is negative
\[ \Rightarrow y = t - 1 + \dfrac{2}{{t - 1}} + 1\]
\[ \Rightarrow y = \left| { - 1\left( {1 - t + \dfrac{2}{{1 - t}} - 1} \right)} \right|\]
\[ \Rightarrow y = \left| { - 1} \right|\left| {\left( {1 - t + \dfrac{2}{{1 - t}} - 1} \right)} \right|\]
\[ \Rightarrow y = \left| {\left( {1 - t + \dfrac{2}{{1 - t}} - 1} \right)} \right|\]
We know that Arithmetic mean \[ \ge \] Geometric mean. Thus, we will get
\[ \Rightarrow \dfrac{{1 - t + \dfrac{2}{{1 - t}}}}{2} \ge \sqrt {\left( {1 - t} \right) \times \dfrac{2}{{1 - t}}} \]
\[ \Rightarrow \dfrac{{1 - t + \dfrac{2}{{1 - t}}}}{2} \ge \sqrt 2 \Rightarrow 1 - t + \dfrac{2}{{1 - t}} \ge 2\sqrt 2 \]
\[ \Rightarrow 1 - t + \dfrac{2}{{1 - t}} - 1 \ge 2\sqrt 2 - 1\]
Thus, we get
\[ \Rightarrow y \ge 2\sqrt 2 - 1\] which is positive………………………………………………\[\left( 4 \right)\]
Since the value has to be minimum, from \[\left( 3 \right)\] and \[\left( 4 \right)\], we get \[2\sqrt 2 - 1 < 2\sqrt 2 + 1\]
Thus the minimum value is \[2\sqrt 2 - 1\]
Therefore, the minimum value of \[\left| {\sin x + \cos x + \tan x + \sec x + \cos ecx + \cot x} \right|\] is \[2\sqrt 2 - 1\].
Note:
We can find the limits by using the trigonometric identity and values. So, it becomes important to remember all the basic identities and values. We have found the minimum value using the relation between arithmetic mean and geometric mean. Arithmetic mean or average is defined as the sum of numbers divided by the quantity of numbers, Geometric mean of two numbers is defined as the square root of their product. We should also remember that the Arithmetic mean should never be less than the geometric mean.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE