
The minimum value of $a\sec x+b\operatorname{cosec}x$, $0 < a,b < 1$, $0 < x < \dfrac{\pi }{2}$.
(a) $a+b$,
(b) ${{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}$,
(c) ${{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{3}{2}}}$,
(d) None of these.
Answer
508.2k+ views
Hint: We start solving the problem by assigning a variable to the function $a\sec x+b\operatorname{cosec}x$. We then differentiate this function with respect to x and equate it to 0 to get the value of x. We differentiate the function again and substitute the obtained value of x to check whether the function is minimum or maximum at that point. We then substitute this value in function to get the minimum value of function.
Complete step-by-step answer:
According to the problem, we have to find the minimum value of $a\sec x+b\operatorname{cosec}x$, $0 < a < b$, $0 < x < \dfrac{\pi }{2}$.
Let us assume $a\sec x+b\operatorname{cosec}x$, $0 < a < b$, $0We know that to find the minimum value of $f\left( x \right)$, we differentiate it with respect to x and equates it to 0 to get the value of x. We then find the function ${{f}^{''}}\left( x \right)$ and substitute the obtained value to check whether the value is positive to get maxima at that value of x.
So, let us differentiate $f\left( x \right)=a\sec x+b\operatorname{cosec}x$ with respect to x on both sides.
$\Rightarrow \dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{d}{dx}\left( a\sec x+b\operatorname{cosec}x \right)$ ---(1).
We know that $\dfrac{d}{dx}\left( ag\left( x \right)+bh\left( x \right) \right)=a\dfrac{d}{dx}\left( g\left( x \right) \right)+b\dfrac{d}{dx}\left( h\left( x \right) \right)$. We use this in equation (1).
$\Rightarrow \dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{d}{dx}\left( a\sec x \right)+\dfrac{d}{dx}\left( b\operatorname{cosec}x \right)$.
\[\Rightarrow \dfrac{d}{dx}\left( f\left( x \right) \right)=a\dfrac{d}{dx}\left( \sec x \right)+b\dfrac{d}{dx}\left( \operatorname{cosec}x \right)\] ---(2).
We know that $\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x$ and $\dfrac{d}{dx}\left( \operatorname{cosec}x \right)=-\operatorname{cosec}x\cot x$. We use these results in equation (2).
\[\Rightarrow \dfrac{d}{dx}\left( f\left( x \right) \right)=a\left( \sec x.\tan x \right)+b\left( -\operatorname{cosec}x.\cot x \right)\].
$\Rightarrow {{f}^{'}}\left( x \right)=a\sec x.\tan x-b\operatorname{cosec}x\cot x$ ---(3).
To find the value of x at which the minimum occurs, we take ${{f}^{'}}\left( x \right)=0$.
$\Rightarrow a\sec x.\tan x-b\operatorname{cosec}x\cot x=0$.
$\Rightarrow a\dfrac{1}{\cos x}.\dfrac{\sin x}{\cos x}-b\dfrac{1}{\sin x}\dfrac{\cos x}{\sin x}=0$.
$\Rightarrow a\dfrac{\sin x}{{{\cos }^{2}}x}-b\dfrac{\cos x}{{{\sin }^{2}}x}=0$.
$\Rightarrow a\dfrac{\sin x}{{{\cos }^{2}}x}=b\dfrac{\cos x}{{{\sin }^{2}}x}$.
$\Rightarrow \dfrac{\sin x}{{{\cos }^{2}}x}\times \dfrac{{{\sin }^{2}}x}{\cos x}=\dfrac{b}{a}$.
$\Rightarrow \dfrac{{{\sin }^{3}}x}{{{\cos }^{3}}x}=\dfrac{b}{a}$.
\[\Rightarrow {{\left( \dfrac{\sin x}{\cos x} \right)}^{3}}=\dfrac{b}{a}\].
\[\Rightarrow {{\left( \tan x \right)}^{3}}=\dfrac{b}{a}\].
\[\Rightarrow \tan x={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}\] ---(4).
Let us differentiate equation (3) with respect to x again.
$\Rightarrow \dfrac{d}{dx}\left( {{f}^{'}}\left( x \right) \right)=\dfrac{d}{dx}\left( a\sec x.\tan x-b\operatorname{cosec}x\cot x \right)$.
$\Rightarrow \dfrac{d}{dx}\left( {{f}^{'}}\left( x \right) \right)=\dfrac{d}{dx}\left( a\sec x.\tan x \right)-\dfrac{d}{dx}\left( b\operatorname{cosec}x\cot x \right)$.
We know that the differentiation of the function $uv$ is defined as $\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$.
$\Rightarrow \dfrac{d}{dx}\left( {{f}^{'}}\left( x \right) \right)=a\sec x\dfrac{d}{dx}\left( \tan x \right)+a\tan x\dfrac{d}{dx}\left( \sec x \right)-b\operatorname{cosec}x\dfrac{d}{dx}\left( \cot x \right)-b\cot x\dfrac{d}{dx}\left( \operatorname{cosec}x \right)$.
We know that $\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x$ and $\dfrac{d}{dx}\left( \cot x \right)=-{{\operatorname{cosec}}^{2}}x$.
$\Rightarrow {{f}^{''}}\left( x \right)=a\sec x\left( {{\sec }^{2}}x \right)+a\tan x\left( \sec x.\tan x \right)-b\operatorname{cosec}x\left( -{{\operatorname{cosec}}^{2}}x \right)-b\cot x\left( -\operatorname{cosec}x\cot x \right)$.
$\Rightarrow {{f}^{''}}\left( x \right)=a{{\sec }^{3}}x+a\sec x.{{\tan }^{2}}x+b{{\operatorname{cosec}}^{3}}x+b\operatorname{cosec}x{{\cot }^{2}}x$ ---(5).
From equation (4), we have \[\tan x={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}\].
\[\Rightarrow \cot x=\dfrac{1}{\tan x}=\dfrac{1}{{{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}}\].
\[\Rightarrow \cot x={{\left( \dfrac{a}{b} \right)}^{\dfrac{1}{3}}}\].
We have ${{\sec }^{2}}x=1+{{\tan }^{2}}x$.
$\Rightarrow {{\sec }^{2}}x=1+{{\left( {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right)}^{2}}$.
$\Rightarrow {{\sec }^{2}}x=1+{{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}}$.
$\Rightarrow {{\sec }^{2}}x=1+\dfrac{{{b}^{\dfrac{2}{3}}}}{{{a}^{\dfrac{2}{3}}}}$.
$\Rightarrow {{\sec }^{2}}x=\dfrac{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}{{{a}^{\dfrac{2}{3}}}}$.
$\Rightarrow \sec x=\dfrac{\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}}{{{a}^{\dfrac{1}{3}}}}$.
We have ${{\operatorname{cosec}}^{2}}x=1+{{\cot }^{2}}x$.
$\Rightarrow {{\operatorname{cosec}}^{2}}x=1+{{\left( {{\left( \dfrac{a}{b} \right)}^{\dfrac{1}{3}}} \right)}^{2}}$.
$\Rightarrow {{\operatorname{cosec}}^{2}}x=1+{{\left( \dfrac{a}{b} \right)}^{\dfrac{2}{3}}}$.
$\Rightarrow {{\operatorname{cosec}}^{2}}x=1+\dfrac{{{a}^{\dfrac{2}{3}}}}{{{b}^{\dfrac{2}{3}}}}$.
$\Rightarrow {{\operatorname{cosec}}^{2}}x=\dfrac{{{b}^{\dfrac{2}{3}}}+{{a}^{\dfrac{2}{3}}}}{{{b}^{\dfrac{2}{3}}}}$.
$\Rightarrow \operatorname{cosec}x=\dfrac{\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}}{{{b}^{\dfrac{1}{3}}}}$.
We substitute all these values in equation (5).
$\Rightarrow {{f}^{''}}\left( x \right)=a{{\left( \dfrac{\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}}{{{a}^{\dfrac{1}{3}}}} \right)}^{3}}+a\left( \dfrac{\sqrt{{{b}^{\dfrac{2}{3}}}+{{a}^{\dfrac{2}{3}}}}}{{{a}^{\dfrac{1}{3}}}} \right).{{\left( {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right)}^{2}}+b{{\left( \dfrac{\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}}{{{b}^{\dfrac{1}{3}}}} \right)}^{3}}+b\left( \dfrac{\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}}{{{b}^{\dfrac{1}{3}}}} \right){{\left( {{\left( \dfrac{a}{b} \right)}^{\dfrac{1}{3}}} \right)}^{2}}$.
$\Rightarrow {{f}^{''}}\left( x \right)=\dfrac{a{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{3}{2}}}}{a}+\dfrac{a{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{1}{2}}}}{{{a}^{\dfrac{1}{3}}}}\times \left( \dfrac{{{b}^{\dfrac{2}{3}}}}{{{a}^{\dfrac{2}{3}}}} \right)+\dfrac{b{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{3}{2}}}}{b}+\dfrac{b{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{1}{2}}}}{{{b}^{\dfrac{1}{3}}}}\times \left( \dfrac{{{a}^{\dfrac{2}{3}}}}{{{b}^{\dfrac{2}{3}}}} \right)$.
\[\Rightarrow {{f}^{''}}\left( x \right)={{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{3}{2}}}+{{b}^{\dfrac{2}{3}}}{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{1}{2}}}+{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{3}{2}}}+{{a}^{\dfrac{2}{3}}}{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{1}{2}}}\].
Since the values of a and b are positive and ${{f}^{''}}\left( x \right)$ involves only addition and square roots which makes the value positive.
So, we get ${{f}^{''}}\left( x \right)>0$. Which means that the value has minimum when $\tan x$ is equal to ${{\left( \dfrac{a}{b} \right)}^{\dfrac{1}{3}}}$.
So, let us find the minimum value of $f\left( x \right)=a\sec x+b\operatorname{cosec}x$.
We have minimum value as $f\left( x \right)=a\left( \dfrac{\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}}{{{a}^{\dfrac{1}{3}}}} \right)+b\left( \dfrac{\sqrt{{{b}^{\dfrac{2}{3}}}+{{a}^{\dfrac{2}{3}}}}}{{{b}^{\dfrac{1}{3}}}} \right)$.
$\Rightarrow f\left( x \right)={{a}^{\dfrac{2}{3}}}\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}+{{b}^{\dfrac{2}{3}}}\sqrt{{{b}^{\dfrac{2}{3}}}+{{a}^{\dfrac{2}{3}}}}$.
$\Rightarrow f\left( x \right)=\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)\times \left( \sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}} \right)$.
$\Rightarrow f\left( x \right)={{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{1+\dfrac{1}{2}}}$.
$\Rightarrow f\left( x \right)={{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{3}{2}}}$.
We have found the minimum value of $a\sec x+b\operatorname{cosec}x$, $0∴ The minimum value of $a\sec x+b\operatorname{cosec}x$, $0 < a < b$, $0 < x < \dfrac{\pi }{2}$ is ${{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{3}{2}}}$.
The correct option for the given problem is (c).
Note: We should know that the value of x we obtained from ${{f}^{'}}\left( x \right)=0$ may not always give a minimum or maxima. So, we need to check the value of ${{f}^{''}}\left( x \right)$ in order to check whether that gives maxima or minima. If we get ${{f}^{''}}\left( x \right)<0$, then x has local maxima and if we get ${{f}^{''}}\left( x \right)>0$, then x has local minima. If ${{f}^{''}}\left( x \right)=0$, then we need to differentiate again and follow the same process. If we get only one value of x while solving ${{f}^{'}}\left( x \right)=0$, it may give us the value of absolute minimum or maximum.
Complete step-by-step answer:
According to the problem, we have to find the minimum value of $a\sec x+b\operatorname{cosec}x$, $0 < a < b$, $0 < x < \dfrac{\pi }{2}$.
Let us assume $a\sec x+b\operatorname{cosec}x$, $0 < a < b$, $0
So, let us differentiate $f\left( x \right)=a\sec x+b\operatorname{cosec}x$ with respect to x on both sides.
$\Rightarrow \dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{d}{dx}\left( a\sec x+b\operatorname{cosec}x \right)$ ---(1).
We know that $\dfrac{d}{dx}\left( ag\left( x \right)+bh\left( x \right) \right)=a\dfrac{d}{dx}\left( g\left( x \right) \right)+b\dfrac{d}{dx}\left( h\left( x \right) \right)$. We use this in equation (1).
$\Rightarrow \dfrac{d}{dx}\left( f\left( x \right) \right)=\dfrac{d}{dx}\left( a\sec x \right)+\dfrac{d}{dx}\left( b\operatorname{cosec}x \right)$.
\[\Rightarrow \dfrac{d}{dx}\left( f\left( x \right) \right)=a\dfrac{d}{dx}\left( \sec x \right)+b\dfrac{d}{dx}\left( \operatorname{cosec}x \right)\] ---(2).
We know that $\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x$ and $\dfrac{d}{dx}\left( \operatorname{cosec}x \right)=-\operatorname{cosec}x\cot x$. We use these results in equation (2).
\[\Rightarrow \dfrac{d}{dx}\left( f\left( x \right) \right)=a\left( \sec x.\tan x \right)+b\left( -\operatorname{cosec}x.\cot x \right)\].
$\Rightarrow {{f}^{'}}\left( x \right)=a\sec x.\tan x-b\operatorname{cosec}x\cot x$ ---(3).
To find the value of x at which the minimum occurs, we take ${{f}^{'}}\left( x \right)=0$.
$\Rightarrow a\sec x.\tan x-b\operatorname{cosec}x\cot x=0$.
$\Rightarrow a\dfrac{1}{\cos x}.\dfrac{\sin x}{\cos x}-b\dfrac{1}{\sin x}\dfrac{\cos x}{\sin x}=0$.
$\Rightarrow a\dfrac{\sin x}{{{\cos }^{2}}x}-b\dfrac{\cos x}{{{\sin }^{2}}x}=0$.
$\Rightarrow a\dfrac{\sin x}{{{\cos }^{2}}x}=b\dfrac{\cos x}{{{\sin }^{2}}x}$.
$\Rightarrow \dfrac{\sin x}{{{\cos }^{2}}x}\times \dfrac{{{\sin }^{2}}x}{\cos x}=\dfrac{b}{a}$.
$\Rightarrow \dfrac{{{\sin }^{3}}x}{{{\cos }^{3}}x}=\dfrac{b}{a}$.
\[\Rightarrow {{\left( \dfrac{\sin x}{\cos x} \right)}^{3}}=\dfrac{b}{a}\].
\[\Rightarrow {{\left( \tan x \right)}^{3}}=\dfrac{b}{a}\].
\[\Rightarrow \tan x={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}\] ---(4).
Let us differentiate equation (3) with respect to x again.
$\Rightarrow \dfrac{d}{dx}\left( {{f}^{'}}\left( x \right) \right)=\dfrac{d}{dx}\left( a\sec x.\tan x-b\operatorname{cosec}x\cot x \right)$.
$\Rightarrow \dfrac{d}{dx}\left( {{f}^{'}}\left( x \right) \right)=\dfrac{d}{dx}\left( a\sec x.\tan x \right)-\dfrac{d}{dx}\left( b\operatorname{cosec}x\cot x \right)$.
We know that the differentiation of the function $uv$ is defined as $\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$.
$\Rightarrow \dfrac{d}{dx}\left( {{f}^{'}}\left( x \right) \right)=a\sec x\dfrac{d}{dx}\left( \tan x \right)+a\tan x\dfrac{d}{dx}\left( \sec x \right)-b\operatorname{cosec}x\dfrac{d}{dx}\left( \cot x \right)-b\cot x\dfrac{d}{dx}\left( \operatorname{cosec}x \right)$.
We know that $\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x$ and $\dfrac{d}{dx}\left( \cot x \right)=-{{\operatorname{cosec}}^{2}}x$.
$\Rightarrow {{f}^{''}}\left( x \right)=a\sec x\left( {{\sec }^{2}}x \right)+a\tan x\left( \sec x.\tan x \right)-b\operatorname{cosec}x\left( -{{\operatorname{cosec}}^{2}}x \right)-b\cot x\left( -\operatorname{cosec}x\cot x \right)$.
$\Rightarrow {{f}^{''}}\left( x \right)=a{{\sec }^{3}}x+a\sec x.{{\tan }^{2}}x+b{{\operatorname{cosec}}^{3}}x+b\operatorname{cosec}x{{\cot }^{2}}x$ ---(5).
From equation (4), we have \[\tan x={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}\].
\[\Rightarrow \cot x=\dfrac{1}{\tan x}=\dfrac{1}{{{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}}\].
\[\Rightarrow \cot x={{\left( \dfrac{a}{b} \right)}^{\dfrac{1}{3}}}\].
We have ${{\sec }^{2}}x=1+{{\tan }^{2}}x$.
$\Rightarrow {{\sec }^{2}}x=1+{{\left( {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right)}^{2}}$.
$\Rightarrow {{\sec }^{2}}x=1+{{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}}$.
$\Rightarrow {{\sec }^{2}}x=1+\dfrac{{{b}^{\dfrac{2}{3}}}}{{{a}^{\dfrac{2}{3}}}}$.
$\Rightarrow {{\sec }^{2}}x=\dfrac{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}{{{a}^{\dfrac{2}{3}}}}$.
$\Rightarrow \sec x=\dfrac{\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}}{{{a}^{\dfrac{1}{3}}}}$.
We have ${{\operatorname{cosec}}^{2}}x=1+{{\cot }^{2}}x$.
$\Rightarrow {{\operatorname{cosec}}^{2}}x=1+{{\left( {{\left( \dfrac{a}{b} \right)}^{\dfrac{1}{3}}} \right)}^{2}}$.
$\Rightarrow {{\operatorname{cosec}}^{2}}x=1+{{\left( \dfrac{a}{b} \right)}^{\dfrac{2}{3}}}$.
$\Rightarrow {{\operatorname{cosec}}^{2}}x=1+\dfrac{{{a}^{\dfrac{2}{3}}}}{{{b}^{\dfrac{2}{3}}}}$.
$\Rightarrow {{\operatorname{cosec}}^{2}}x=\dfrac{{{b}^{\dfrac{2}{3}}}+{{a}^{\dfrac{2}{3}}}}{{{b}^{\dfrac{2}{3}}}}$.
$\Rightarrow \operatorname{cosec}x=\dfrac{\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}}{{{b}^{\dfrac{1}{3}}}}$.
We substitute all these values in equation (5).
$\Rightarrow {{f}^{''}}\left( x \right)=a{{\left( \dfrac{\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}}{{{a}^{\dfrac{1}{3}}}} \right)}^{3}}+a\left( \dfrac{\sqrt{{{b}^{\dfrac{2}{3}}}+{{a}^{\dfrac{2}{3}}}}}{{{a}^{\dfrac{1}{3}}}} \right).{{\left( {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right)}^{2}}+b{{\left( \dfrac{\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}}{{{b}^{\dfrac{1}{3}}}} \right)}^{3}}+b\left( \dfrac{\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}}{{{b}^{\dfrac{1}{3}}}} \right){{\left( {{\left( \dfrac{a}{b} \right)}^{\dfrac{1}{3}}} \right)}^{2}}$.
$\Rightarrow {{f}^{''}}\left( x \right)=\dfrac{a{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{3}{2}}}}{a}+\dfrac{a{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{1}{2}}}}{{{a}^{\dfrac{1}{3}}}}\times \left( \dfrac{{{b}^{\dfrac{2}{3}}}}{{{a}^{\dfrac{2}{3}}}} \right)+\dfrac{b{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{3}{2}}}}{b}+\dfrac{b{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{1}{2}}}}{{{b}^{\dfrac{1}{3}}}}\times \left( \dfrac{{{a}^{\dfrac{2}{3}}}}{{{b}^{\dfrac{2}{3}}}} \right)$.
\[\Rightarrow {{f}^{''}}\left( x \right)={{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{3}{2}}}+{{b}^{\dfrac{2}{3}}}{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{1}{2}}}+{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{3}{2}}}+{{a}^{\dfrac{2}{3}}}{{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{1}{2}}}\].
Since the values of a and b are positive and ${{f}^{''}}\left( x \right)$ involves only addition and square roots which makes the value positive.
So, we get ${{f}^{''}}\left( x \right)>0$. Which means that the value has minimum when $\tan x$ is equal to ${{\left( \dfrac{a}{b} \right)}^{\dfrac{1}{3}}}$.
So, let us find the minimum value of $f\left( x \right)=a\sec x+b\operatorname{cosec}x$.
We have minimum value as $f\left( x \right)=a\left( \dfrac{\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}}{{{a}^{\dfrac{1}{3}}}} \right)+b\left( \dfrac{\sqrt{{{b}^{\dfrac{2}{3}}}+{{a}^{\dfrac{2}{3}}}}}{{{b}^{\dfrac{1}{3}}}} \right)$.
$\Rightarrow f\left( x \right)={{a}^{\dfrac{2}{3}}}\sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}}+{{b}^{\dfrac{2}{3}}}\sqrt{{{b}^{\dfrac{2}{3}}}+{{a}^{\dfrac{2}{3}}}}$.
$\Rightarrow f\left( x \right)=\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)\times \left( \sqrt{{{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}}} \right)$.
$\Rightarrow f\left( x \right)={{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{1+\dfrac{1}{2}}}$.
$\Rightarrow f\left( x \right)={{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{3}{2}}}$.
We have found the minimum value of $a\sec x+b\operatorname{cosec}x$, $0∴ The minimum value of $a\sec x+b\operatorname{cosec}x$, $0 < a < b$, $0 < x < \dfrac{\pi }{2}$ is ${{\left( {{a}^{\dfrac{2}{3}}}+{{b}^{\dfrac{2}{3}}} \right)}^{\dfrac{3}{2}}}$.
The correct option for the given problem is (c).
Note: We should know that the value of x we obtained from ${{f}^{'}}\left( x \right)=0$ may not always give a minimum or maxima. So, we need to check the value of ${{f}^{''}}\left( x \right)$ in order to check whether that gives maxima or minima. If we get ${{f}^{''}}\left( x \right)<0$, then x has local maxima and if we get ${{f}^{''}}\left( x \right)>0$, then x has local minima. If ${{f}^{''}}\left( x \right)=0$, then we need to differentiate again and follow the same process. If we get only one value of x while solving ${{f}^{'}}\left( x \right)=0$, it may give us the value of absolute minimum or maximum.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

What is the function of copulatory pads in the forelimbs class 11 biology CBSE
