
The median of the following data is 525. Find the values of $x$ and $y$ if the total frequency is 100.
Class Interval Frequency 0-100 2 100-200 5 200-300 $x$ 300-400 12 400-500 17 500-600 20 600-700 $y$ 700-800 9 800-900 7 900-1000 4
| Class Interval | Frequency |
| 0-100 | 2 |
| 100-200 | 5 |
| 200-300 | $x$ |
| 300-400 | 12 |
| 400-500 | 17 |
| 500-600 | 20 |
| 600-700 | $y$ |
| 700-800 | 9 |
| 800-900 | 7 |
| 900-1000 | 4 |
Answer
566.4k+ views
Hint: We solve this problem by first adding the frequencies of all the classes given and then equate it to 100. Then we get an equation with $x$ and $y$. Then we find the median class from the given value of median. Then we use the formula for median of the grouped frequency, $Median=l+\dfrac{\dfrac{N}{2}-C}{f}\times h$ and substitute the values as required and find the value of $x$. Then we substitute the value of $x$ in the obtained equation with $x$ and $y$ to find the value of $y$.
Complete step by step answer:
We can see that the given frequency distribution is grouped.
Now let us add a column of cumulative frequency to the given frequency table.
We are given that the total frequency is 100.
So, we get,
$\begin{align}
& \Rightarrow \sum{{{f}_{i}}}=76+x+y \\
& \Rightarrow 76+x+y=100 \\
& \Rightarrow x+y=24..........\left( 1 \right) \\
\end{align}$
Now let us consider the formula for median of the grouped frequency.
$Median=l+\dfrac{\dfrac{N}{2}-C}{f}\times h$
where, $l=$ Lower limit of median class
$h=$ width of the class interval
$f=$ frequency of the median class
$N=$ Sum of all frequencies
$C=$ Cumulative frequency of the class preceding median class
We are given that median of the given data is 525. From the given table, we can see that the median class is 500-600 because given value of median lies in the class 500-600.
So, Median Class = 500-600
So, from the table above we get the values required in the formula as,
$l=500$, $N=100$, $C=36+x$, $h=100$ and $f=20$.
So, substituting them in the formula for median we get,
$\begin{align}
& \Rightarrow Median=500+\dfrac{\dfrac{100}{2}-\left( 36+x \right)}{20}\times 100 \\
& \Rightarrow 525=500+\left( 50-\left( 36+x \right) \right)\times 5 \\
& \Rightarrow 525-500=\left( 50-36-x \right)\times 5 \\
\end{align}$
$\begin{align}
& \Rightarrow 25=\left( 14-x \right)\times 5 \\
& \Rightarrow 50=70-5x \\
& \Rightarrow 5x=70-50 \\
& \Rightarrow 5x=20 \\
& \Rightarrow x=4 \\
\end{align}$
Substituting this value in the equation (1) we get,
$\begin{align}
& \Rightarrow x+y=24 \\
& \Rightarrow 4+y=24 \\
& \Rightarrow y=24-4 \\
& \Rightarrow y=20 \\
\end{align}$
So, we get the values of $x$ and $y$ as 4 and 20 respectively.
Hence the answer is 4 and 20.
Note: There is a possibility of one making a mistake while solving this problem by taking the interpretation of the formula for median in a wrong way as,
$Median=l+\dfrac{\dfrac{N}{2}-C}{f}\times h$
where, $l=$ Lower limit of median class
$h=$ width of the class interval
$f=$ Cumulative frequency of the median class
$N=$ Sum of all frequencies
$C=$ Frequency of the class preceding median class
So, one needs to be careful while applying the formula.
Complete step by step answer:
We can see that the given frequency distribution is grouped.
Now let us add a column of cumulative frequency to the given frequency table.
| Class | ${{f}_{i}}$ | Cumulative Frequency (less than) ${{F}_{i}}$ |
| 0-100 | 2 | 2 |
| 100-200 | 5 | 7 |
| 200-300 | $x$ | 7+$x$ |
| 300-400 | 12 | 19+$x$ |
| 400-500 | 17 | 36+$x$ |
| 500-600 | 20 | 56+$x$ |
| 600-700 | $y$ | 56+$x+y$ |
| 700-800 | 9 | 65+$x+y$ |
| 800-900 | 7 | 72+$x+y$ |
| 900-1000 | 4 | 76+$x+y$ |
| Total | $\sum{{{f}_{i}}}=76+x+y$ |
We are given that the total frequency is 100.
So, we get,
$\begin{align}
& \Rightarrow \sum{{{f}_{i}}}=76+x+y \\
& \Rightarrow 76+x+y=100 \\
& \Rightarrow x+y=24..........\left( 1 \right) \\
\end{align}$
Now let us consider the formula for median of the grouped frequency.
$Median=l+\dfrac{\dfrac{N}{2}-C}{f}\times h$
where, $l=$ Lower limit of median class
$h=$ width of the class interval
$f=$ frequency of the median class
$N=$ Sum of all frequencies
$C=$ Cumulative frequency of the class preceding median class
We are given that median of the given data is 525. From the given table, we can see that the median class is 500-600 because given value of median lies in the class 500-600.
So, Median Class = 500-600
So, from the table above we get the values required in the formula as,
$l=500$, $N=100$, $C=36+x$, $h=100$ and $f=20$.
So, substituting them in the formula for median we get,
$\begin{align}
& \Rightarrow Median=500+\dfrac{\dfrac{100}{2}-\left( 36+x \right)}{20}\times 100 \\
& \Rightarrow 525=500+\left( 50-\left( 36+x \right) \right)\times 5 \\
& \Rightarrow 525-500=\left( 50-36-x \right)\times 5 \\
\end{align}$
$\begin{align}
& \Rightarrow 25=\left( 14-x \right)\times 5 \\
& \Rightarrow 50=70-5x \\
& \Rightarrow 5x=70-50 \\
& \Rightarrow 5x=20 \\
& \Rightarrow x=4 \\
\end{align}$
Substituting this value in the equation (1) we get,
$\begin{align}
& \Rightarrow x+y=24 \\
& \Rightarrow 4+y=24 \\
& \Rightarrow y=24-4 \\
& \Rightarrow y=20 \\
\end{align}$
So, we get the values of $x$ and $y$ as 4 and 20 respectively.
Hence the answer is 4 and 20.
Note: There is a possibility of one making a mistake while solving this problem by taking the interpretation of the formula for median in a wrong way as,
$Median=l+\dfrac{\dfrac{N}{2}-C}{f}\times h$
where, $l=$ Lower limit of median class
$h=$ width of the class interval
$f=$ Cumulative frequency of the median class
$N=$ Sum of all frequencies
$C=$ Frequency of the class preceding median class
So, one needs to be careful while applying the formula.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

