
The mean square deviation of set of $n$observations ${x_1},{x_2}....{x_n}$ about a point $c$ is defined as $\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - c} \right)}^2}} $
The mean square deviation about $ - 2$ and 2 are 18 and 10 respectively, then standard deviation of this set of observations is
A.3
B.2
C.1
D.None of these
Answer
598.2k+ views
Hint: Use the formula for the mean square deviation to form equations for points $ - 2$and 2. Use the formed equations to find the value of \[\sum\limits_{i = 1}^n {{x_i}^2} \] and $\sum\limits_{i = 1}^n {{x_i}} $ in terms of $n$ for the set of observations. Substitute these values in the formula for standard deviation $\sigma = \sqrt {\dfrac{1}{n}\sum\limits_{i = 1}^n {x_i^2} - {{\left( {\dfrac{1}{n}\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $ to calculate the standard deviations.
Complete step-by-step answer:
Let there be $n$observations in the set. Since the mean square deviation of set of $n$observations ${x_1},{x_2}....{x_n}$ about a point $c$ is defined as $\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - c} \right)}^2}} $, and we are given that the mean square deviation about $ - 2$ is 18. Thus replacing $ - 2$ by $c$, we get
$\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \left( { - 2} \right)} \right)}^2}} = 18$
On simplifying,
$\sum\limits_{i = 1}^n {{{\left( {{x_i} + 2} \right)}^2}} = 18n{\text{ (1)}}$
Similarly, we are also given that the mean square deviation around 2 is 10.
Thus, $\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \left( 2 \right)} \right)}^2}} = 10$
$\sum\limits_{i = 1}^n {{{\left( {{x_i} - 2} \right)}^2}} = 10n{\text{ (2)}}$
On adding equations 1 and 2, we get
$\sum\limits_{i = 1}^n {{{\left( {{x_i} + 2} \right)}^2}} + \sum\limits_{i = 1}^n {{{\left( {{x_i} - 2} \right)}^2}} = 10n + 18n{\text{ }}$
We can simplify the above expression as:
$
\sum\limits_{i = 1}^n {{{\left( {{x_i} + 2} \right)}^2}} + \sum\limits_{i = 1}^n {{{\left( {{x_i} - 2} \right)}^2}} = 28n \\
\sum\limits_{i = 1}^n {{{\left( {{x_i} + 2} \right)}^2} + {{\left( {{x_i} - 2} \right)}^2}} = 28n \\
\sum\limits_{i = 1}^n {{x_i}^2 + 4{x_i} + 4 + {x_i}^2 - 4{x_i} + 4} = 28n \\
\sum\limits_{i = 1}^n {2{x_i}^2 + 8} = 28n \\
2\sum\limits_{i = 1}^n {{x_i}^2 + 4} = 28n \\
\sum\limits_{i = 1}^n {{x_i}^2 + 4} = 14n \\
\sum\limits_{i = 1}^n {{x_i}^2 + \sum\limits_{i = 1}^n 4 } = 14n \\
\sum\limits_{i = 1}^n {{x_i}^2} + 4n = 14n \\
\sum\limits_{i = 1}^n {{x_i}^2} = 10n \\
$
On subtracting equation 2 from 1, we get
$\sum\limits_{i = 1}^n {{{\left( {{x_i} + 2} \right)}^2}} - \sum\limits_{i = 1}^n {{{\left( {{x_i} - 2} \right)}^2}} = 18n - 10n$
We can simplify the above expression as:
$
\sum\limits_{i = 1}^n {{{\left( {{x_i} + 2} \right)}^2} - {{\left( {{x_i} - 2} \right)}^2}} = 8n \\
\sum\limits_{i = 1}^n {\left( {{x_i} + 2 + {x_i} - 2} \right)\left( {{x_i} + 2 - {x_i} + 2} \right)} = 8n \\
\sum\limits_{i = 1}^n {\left( {2{x_i}} \right)\left( 4 \right)} = 8n \\
8\sum\limits_{i = 1}^n {{x_i}} = 8n \\
\sum\limits_{i = 1}^n {{x_i}} = n \\
$
The standard deviation of set of $n$observations ${x_1},{x_2}....{x_n}$ is defined as $\sigma = \sqrt {\dfrac{1}{n}\sum\limits_{i = 1}^n {x_i^2} - {{\left( {\dfrac{1}{n}\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $
Substituting $10n$ for \[\sum\limits_{i = 1}^n {{x_i}^2} \] and $n$ for $\sum\limits_{i = 1}^n {{x_i}} $ in the equation $\sqrt {\dfrac{1}{n}\sum\limits_{i = 1}^n {x_i^2} - {{\left( {\dfrac{1}{n}\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $, we get
$
\sigma = \sqrt {\dfrac{{1\left( {10n} \right)}}{n} - {{\left( {\dfrac{{1\left( n \right)}}{n}} \right)}^2}} \\
\sigma = \sqrt {10 - {{\left( 1 \right)}^2}} \\
\sigma = \sqrt 9 \\
\sigma = 3 \\
$
Hence the standard deviation of the set of $n$observations is 3.
Thus option A is the correct answer.
Note: The standard deviation of the set of $n$ observations ${x_1},{x_2}....{x_n}$ is defined as $\sigma = \sqrt {\dfrac{1}{n}\sum\limits_{i = 1}^n {x_i^2} - {{\left( {\dfrac{1}{n}\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $ and the mean square deviation of set of $n$observations ${x_1},{x_2}....{x_n}$ about a point $c$ is defined as $\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - c} \right)}^2}} $. Also the value \[\sum\limits_{i = 1}^n 4 \] equals $4n$ as \[\sum\limits_{i = 1}^n 4 = 4 + 4 + 4 + .......4\;n{\text{ times}}\].
Complete step-by-step answer:
Let there be $n$observations in the set. Since the mean square deviation of set of $n$observations ${x_1},{x_2}....{x_n}$ about a point $c$ is defined as $\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - c} \right)}^2}} $, and we are given that the mean square deviation about $ - 2$ is 18. Thus replacing $ - 2$ by $c$, we get
$\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \left( { - 2} \right)} \right)}^2}} = 18$
On simplifying,
$\sum\limits_{i = 1}^n {{{\left( {{x_i} + 2} \right)}^2}} = 18n{\text{ (1)}}$
Similarly, we are also given that the mean square deviation around 2 is 10.
Thus, $\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \left( 2 \right)} \right)}^2}} = 10$
$\sum\limits_{i = 1}^n {{{\left( {{x_i} - 2} \right)}^2}} = 10n{\text{ (2)}}$
On adding equations 1 and 2, we get
$\sum\limits_{i = 1}^n {{{\left( {{x_i} + 2} \right)}^2}} + \sum\limits_{i = 1}^n {{{\left( {{x_i} - 2} \right)}^2}} = 10n + 18n{\text{ }}$
We can simplify the above expression as:
$
\sum\limits_{i = 1}^n {{{\left( {{x_i} + 2} \right)}^2}} + \sum\limits_{i = 1}^n {{{\left( {{x_i} - 2} \right)}^2}} = 28n \\
\sum\limits_{i = 1}^n {{{\left( {{x_i} + 2} \right)}^2} + {{\left( {{x_i} - 2} \right)}^2}} = 28n \\
\sum\limits_{i = 1}^n {{x_i}^2 + 4{x_i} + 4 + {x_i}^2 - 4{x_i} + 4} = 28n \\
\sum\limits_{i = 1}^n {2{x_i}^2 + 8} = 28n \\
2\sum\limits_{i = 1}^n {{x_i}^2 + 4} = 28n \\
\sum\limits_{i = 1}^n {{x_i}^2 + 4} = 14n \\
\sum\limits_{i = 1}^n {{x_i}^2 + \sum\limits_{i = 1}^n 4 } = 14n \\
\sum\limits_{i = 1}^n {{x_i}^2} + 4n = 14n \\
\sum\limits_{i = 1}^n {{x_i}^2} = 10n \\
$
On subtracting equation 2 from 1, we get
$\sum\limits_{i = 1}^n {{{\left( {{x_i} + 2} \right)}^2}} - \sum\limits_{i = 1}^n {{{\left( {{x_i} - 2} \right)}^2}} = 18n - 10n$
We can simplify the above expression as:
$
\sum\limits_{i = 1}^n {{{\left( {{x_i} + 2} \right)}^2} - {{\left( {{x_i} - 2} \right)}^2}} = 8n \\
\sum\limits_{i = 1}^n {\left( {{x_i} + 2 + {x_i} - 2} \right)\left( {{x_i} + 2 - {x_i} + 2} \right)} = 8n \\
\sum\limits_{i = 1}^n {\left( {2{x_i}} \right)\left( 4 \right)} = 8n \\
8\sum\limits_{i = 1}^n {{x_i}} = 8n \\
\sum\limits_{i = 1}^n {{x_i}} = n \\
$
The standard deviation of set of $n$observations ${x_1},{x_2}....{x_n}$ is defined as $\sigma = \sqrt {\dfrac{1}{n}\sum\limits_{i = 1}^n {x_i^2} - {{\left( {\dfrac{1}{n}\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $
Substituting $10n$ for \[\sum\limits_{i = 1}^n {{x_i}^2} \] and $n$ for $\sum\limits_{i = 1}^n {{x_i}} $ in the equation $\sqrt {\dfrac{1}{n}\sum\limits_{i = 1}^n {x_i^2} - {{\left( {\dfrac{1}{n}\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $, we get
$
\sigma = \sqrt {\dfrac{{1\left( {10n} \right)}}{n} - {{\left( {\dfrac{{1\left( n \right)}}{n}} \right)}^2}} \\
\sigma = \sqrt {10 - {{\left( 1 \right)}^2}} \\
\sigma = \sqrt 9 \\
\sigma = 3 \\
$
Hence the standard deviation of the set of $n$observations is 3.
Thus option A is the correct answer.
Note: The standard deviation of the set of $n$ observations ${x_1},{x_2}....{x_n}$ is defined as $\sigma = \sqrt {\dfrac{1}{n}\sum\limits_{i = 1}^n {x_i^2} - {{\left( {\dfrac{1}{n}\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $ and the mean square deviation of set of $n$observations ${x_1},{x_2}....{x_n}$ about a point $c$ is defined as $\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - c} \right)}^2}} $. Also the value \[\sum\limits_{i = 1}^n 4 \] equals $4n$ as \[\sum\limits_{i = 1}^n 4 = 4 + 4 + 4 + .......4\;n{\text{ times}}\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

