
The mean of the squares of the first $ n $ natural numbers is?
A. $ {{n}^{2}}+1 $
B. $ \dfrac{{{n}^{4}}+1}{n} $
C. $ \dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6} $
D. $ \dfrac{\left( n+1 \right)\left( n+2 \right)}{m} $
Answer
582k+ views
Hint: In this problem we will assume the $ n $ natural numbers and we will calculate the squares of the $ n $ natural numbers and then we will calculate the value of sum of squares of the $ n $ natural numbers. We know that the average is the ratio of sum of the variables to the total number of variables. So, we will find the ratio of the sum of squares of the $ n $ natural numbers to the $ n $ natural numbers.
Complete step-by-step answer:
Let the $ n $ natural numbers are $ 1,2,3,4,...,n $
Now the squares of the $ n $ natural numbers are $ {{1}^{2}},{{2}^{2}},{{3}^{2}},{{4}^{2}},...,{{n}^{2}} $
The sum of the squares of the $ n $ natural numbers is $ {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+...+{{n}^{2}} $ .
Let the sum of the square of the $ n $ natural numbers is
$ {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+...+{{n}^{2}}=S $
We know the identity $ {{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b+3a{{b}^{2}} $
Now substituting the value of $ b $ as $ 1 $ , then
$ {{\left( a-1 \right)}^{3}}={{a}^{3}}-1-3{{a}^{2}}+3a $
Now multiplying minus $ \left( - \right) $ to the above equation, then
$ -{{\left( a-1 \right)}^{3}}=1-3a+3{{a}^{2}}-{{a}^{3}} $
Now add the value $ {{a}^{3}} $ to the both side of above equation, then
$ {{a}^{3}}-{{\left( a-1 \right)}^{3}}=3{{a}^{2}}-3a+1 $
Now substituting the values $ 1,2,3,4,...,n $ in $ a $ one by one, then
$ \begin{align}
& {{1}^{3}}-{{\left( 1-1 \right)}^{3}}=3{{\left( 1 \right)}^{2}}-3\left( 1 \right)+1 \\
& {{2}^{3}}-{{\left( 2-1 \right)}^{3}}=3{{\left( 2 \right)}^{2}}-3\left( 2 \right)+1 \\
& {{3}^{3}}-{{\left( 3-1 \right)}^{3}}=3{{\left( 3 \right)}^{2}}-3\left( 3 \right)+1 \\
& {{4}^{3}}-{{\left( 4-1 \right)}^{3}}=3{{\left( 4 \right)}^{2}}-3\left( 4 \right)+1 \\
& . \\
& . \\
& . \\
& {{n}^{3}}-{{\left( n-1 \right)}^{3}}=3{{\left( n \right)}^{2}}-3\left( n \right)+1
\end{align} $
Now adding the all the equations then
$ \begin{align}
& {{1}^{3}}-{{\left( 1-1 \right)}^{3}}+{{2}^{3}}-{{\left( 2-1 \right)}^{3}}+{{3}^{3}}-{{\left( 3-1 \right)}^{3}}+...+{{n}^{3}}-{{\left( n-1 \right)}^{3}}=3{{\left( 1 \right)}^{2}}-3\left( 1 \right)+1+3{{\left( 2 \right)}^{2}}-3\left( 2 \right)+1+3{{\left( 3 \right)}^{2}}-3\left( 3 \right)+1+...+3{{\left( n \right)}^{2}}-3\left( n \right)+1 \\
& {{n}^{3}}-{{0}^{3}}=3\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+...+{{n}^{2}} \right)-3\left( 1+2+3+4+...+n \right)+\left( 1+1+1+1+....n\text{ times} \right)
\end{align} $
Now substituting the value $ {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+...+{{n}^{2}}=S $ in the above equation and the value $ 1+2+3+4+...+n=\dfrac{n\left( n+1 \right)}{2} $ , then
$ \begin{align}
& {{n}^{3}}=3\left( S \right)-3\left( \dfrac{n\left( n+1 \right)}{2} \right)+n \\
& 3S={{n}^{3}}+\dfrac{3}{2}n\left( n+1 \right)-n \\
& =n\left( {{n}^{2}}-1 \right)+\dfrac{3}{2}n\left( n+1 \right)
\end{align} $
Using the formula $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ in the above equation, then
$ \begin{align}
& 3S=n\left( n+1 \right)\left( n-1 \right)+\dfrac{3}{2}n\left( n+1 \right) \\
& =n\left( n+1 \right)\left[ n-1+\dfrac{3}{2} \right] \\
& =n\left( n+1 \right)\left( \dfrac{2n-2+3}{2} \right) \\
& S=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}
\end{align} $
So we have the value of sum of squares of the $ n $ natural numbers, now we need to find the average of the squares of the $ n $ natural numbers by using the formula
Average of square of $ n $ natural numbers $ =\dfrac{\text{Sum of squares of }n\text{ natural numbers}}{n} $
$ \begin{align}
& =\dfrac{S}{n} \\
& =\dfrac{\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}{n} \\
& =\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6n} \\
& =\dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6}
\end{align} $
Hence the required value is $ \dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6} $
Note: We can also find the solution for this problem in another method. We can manually find the average of the squares of first $ 5 $ numbers and check the result by substituting $ n=5 $ in the given options. After that calculate the average of first $ 10 $ numbers and check the result by substituting $ n=10 $ in the given options.
Complete step-by-step answer:
Let the $ n $ natural numbers are $ 1,2,3,4,...,n $
Now the squares of the $ n $ natural numbers are $ {{1}^{2}},{{2}^{2}},{{3}^{2}},{{4}^{2}},...,{{n}^{2}} $
The sum of the squares of the $ n $ natural numbers is $ {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+...+{{n}^{2}} $ .
Let the sum of the square of the $ n $ natural numbers is
$ {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+...+{{n}^{2}}=S $
We know the identity $ {{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b+3a{{b}^{2}} $
Now substituting the value of $ b $ as $ 1 $ , then
$ {{\left( a-1 \right)}^{3}}={{a}^{3}}-1-3{{a}^{2}}+3a $
Now multiplying minus $ \left( - \right) $ to the above equation, then
$ -{{\left( a-1 \right)}^{3}}=1-3a+3{{a}^{2}}-{{a}^{3}} $
Now add the value $ {{a}^{3}} $ to the both side of above equation, then
$ {{a}^{3}}-{{\left( a-1 \right)}^{3}}=3{{a}^{2}}-3a+1 $
Now substituting the values $ 1,2,3,4,...,n $ in $ a $ one by one, then
$ \begin{align}
& {{1}^{3}}-{{\left( 1-1 \right)}^{3}}=3{{\left( 1 \right)}^{2}}-3\left( 1 \right)+1 \\
& {{2}^{3}}-{{\left( 2-1 \right)}^{3}}=3{{\left( 2 \right)}^{2}}-3\left( 2 \right)+1 \\
& {{3}^{3}}-{{\left( 3-1 \right)}^{3}}=3{{\left( 3 \right)}^{2}}-3\left( 3 \right)+1 \\
& {{4}^{3}}-{{\left( 4-1 \right)}^{3}}=3{{\left( 4 \right)}^{2}}-3\left( 4 \right)+1 \\
& . \\
& . \\
& . \\
& {{n}^{3}}-{{\left( n-1 \right)}^{3}}=3{{\left( n \right)}^{2}}-3\left( n \right)+1
\end{align} $
Now adding the all the equations then
$ \begin{align}
& {{1}^{3}}-{{\left( 1-1 \right)}^{3}}+{{2}^{3}}-{{\left( 2-1 \right)}^{3}}+{{3}^{3}}-{{\left( 3-1 \right)}^{3}}+...+{{n}^{3}}-{{\left( n-1 \right)}^{3}}=3{{\left( 1 \right)}^{2}}-3\left( 1 \right)+1+3{{\left( 2 \right)}^{2}}-3\left( 2 \right)+1+3{{\left( 3 \right)}^{2}}-3\left( 3 \right)+1+...+3{{\left( n \right)}^{2}}-3\left( n \right)+1 \\
& {{n}^{3}}-{{0}^{3}}=3\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+...+{{n}^{2}} \right)-3\left( 1+2+3+4+...+n \right)+\left( 1+1+1+1+....n\text{ times} \right)
\end{align} $
Now substituting the value $ {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+...+{{n}^{2}}=S $ in the above equation and the value $ 1+2+3+4+...+n=\dfrac{n\left( n+1 \right)}{2} $ , then
$ \begin{align}
& {{n}^{3}}=3\left( S \right)-3\left( \dfrac{n\left( n+1 \right)}{2} \right)+n \\
& 3S={{n}^{3}}+\dfrac{3}{2}n\left( n+1 \right)-n \\
& =n\left( {{n}^{2}}-1 \right)+\dfrac{3}{2}n\left( n+1 \right)
\end{align} $
Using the formula $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ in the above equation, then
$ \begin{align}
& 3S=n\left( n+1 \right)\left( n-1 \right)+\dfrac{3}{2}n\left( n+1 \right) \\
& =n\left( n+1 \right)\left[ n-1+\dfrac{3}{2} \right] \\
& =n\left( n+1 \right)\left( \dfrac{2n-2+3}{2} \right) \\
& S=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}
\end{align} $
So we have the value of sum of squares of the $ n $ natural numbers, now we need to find the average of the squares of the $ n $ natural numbers by using the formula
Average of square of $ n $ natural numbers $ =\dfrac{\text{Sum of squares of }n\text{ natural numbers}}{n} $
$ \begin{align}
& =\dfrac{S}{n} \\
& =\dfrac{\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}}{n} \\
& =\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6n} \\
& =\dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6}
\end{align} $
Hence the required value is $ \dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6} $
Note: We can also find the solution for this problem in another method. We can manually find the average of the squares of first $ 5 $ numbers and check the result by substituting $ n=5 $ in the given options. After that calculate the average of first $ 10 $ numbers and check the result by substituting $ n=10 $ in the given options.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

