Answer
Verified
465k+ views
Hint: Try to write down the maximum acceleration and maximum speed formula in terms of given options, i.e, amplitude and frequency.
Formula Used:
$\begin{align}
& {{a}_{\max }}={{\omega }^{2}}A \\
& {{v}_{\max }}=\omega A \\
& \omega =2\pi \nu \\
\end{align}$
Complete step-by-step answer:
Let the maximum acceleration of the particle ${{a}_{\max }}$, amplitude $A$, frequency $\nu $,maximum speed ${{v}_{\max }}$ angular velocity $\omega $.
initially, $\begin{align}
& {{a}_{\max }}={{\omega }^{2}}A \\
& {{v}_{max}}=\omega A \\
\end{align}$
finally, $\begin{align}
& {{a}_{\max }}=2{{\omega }^{2}}A \\
& {{v}_{\max }}=\omega A \\
\end{align}$
if we convert $\omega $ in terms of frequency, we get $\omega =2\pi \nu $
substituting it in the above formula we get,
$\begin{align}
& {{a}_{\max }}=4{{\pi }^{2}}{{\nu }^{2}}A \\
& {{v}_{\max }}=2\pi \nu A \\
& \\
\end{align}$
Taking option one and four, if only one term is only doubled while the other is constant, we won’t get the required answer. So, answer isn’t option one and four.
Option two, amplitude is doubled, frequency is halved, i.e,
$\begin{align}
& {{A}_{2}}=2A \\
& {{\nu }_{2}}=\dfrac{\nu }{2} \\
& {{a}_{\max }}=4{{\pi }^{2}}{{(\dfrac{\nu }{2})}^{2}}(2A) \\
& {{a}_{\max }}=2{{\pi }^{2}}{{\nu }^{2}}A \\
\end{align}$
Clearly the maximum acceleration is halved but not doubled. so, option two is wrong.
Take option three, frequency is doubled, amplitude is halved, i.e,
$\begin{align}
& {{\nu }_{2}}=2\nu \\
& A=\dfrac{A}{2} \\
& {{v}_{\max }}=2\pi (2\nu )(\dfrac{A}{2}) \\
& {{v}_{\max }}=2\pi \nu A \\
& {{a}_{\max }}=4{{\pi }^{2}}{{(2\nu )}^{2}}(\dfrac{A}{2}) \\
& {{a}_{\max }}=8{{\pi }^{2}}{{\nu }^{2}}A \\
& \\
\end{align}$
Clearly the maximum speed did not change but the maximum acceleration is doubled. so, option c) is right.
Note: Don’t get confused with acceleration and maximum acceleration or speed and maximum speed. The formula of both the terms are different. Also be careful deriving frequency from angular velocity.
Formula Used:
$\begin{align}
& {{a}_{\max }}={{\omega }^{2}}A \\
& {{v}_{\max }}=\omega A \\
& \omega =2\pi \nu \\
\end{align}$
Complete step-by-step answer:
Let the maximum acceleration of the particle ${{a}_{\max }}$, amplitude $A$, frequency $\nu $,maximum speed ${{v}_{\max }}$ angular velocity $\omega $.
initially, $\begin{align}
& {{a}_{\max }}={{\omega }^{2}}A \\
& {{v}_{max}}=\omega A \\
\end{align}$
finally, $\begin{align}
& {{a}_{\max }}=2{{\omega }^{2}}A \\
& {{v}_{\max }}=\omega A \\
\end{align}$
if we convert $\omega $ in terms of frequency, we get $\omega =2\pi \nu $
substituting it in the above formula we get,
$\begin{align}
& {{a}_{\max }}=4{{\pi }^{2}}{{\nu }^{2}}A \\
& {{v}_{\max }}=2\pi \nu A \\
& \\
\end{align}$
Taking option one and four, if only one term is only doubled while the other is constant, we won’t get the required answer. So, answer isn’t option one and four.
Option two, amplitude is doubled, frequency is halved, i.e,
$\begin{align}
& {{A}_{2}}=2A \\
& {{\nu }_{2}}=\dfrac{\nu }{2} \\
& {{a}_{\max }}=4{{\pi }^{2}}{{(\dfrac{\nu }{2})}^{2}}(2A) \\
& {{a}_{\max }}=2{{\pi }^{2}}{{\nu }^{2}}A \\
\end{align}$
Clearly the maximum acceleration is halved but not doubled. so, option two is wrong.
Take option three, frequency is doubled, amplitude is halved, i.e,
$\begin{align}
& {{\nu }_{2}}=2\nu \\
& A=\dfrac{A}{2} \\
& {{v}_{\max }}=2\pi (2\nu )(\dfrac{A}{2}) \\
& {{v}_{\max }}=2\pi \nu A \\
& {{a}_{\max }}=4{{\pi }^{2}}{{(2\nu )}^{2}}(\dfrac{A}{2}) \\
& {{a}_{\max }}=8{{\pi }^{2}}{{\nu }^{2}}A \\
& \\
\end{align}$
Clearly the maximum speed did not change but the maximum acceleration is doubled. so, option c) is right.
Note: Don’t get confused with acceleration and maximum acceleration or speed and maximum speed. The formula of both the terms are different. Also be careful deriving frequency from angular velocity.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE