
The magnetic field at the center loop in the circuit carrying current I shown in figure is:
$
(a){\text{ }}\dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2I}}{r}\left( {1 + \pi } \right) \\
(b){\text{ }}\dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2I}}{r}\left( {\pi - 1} \right) \\
(c){\text{ }}\dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2I}}{r} \\
(d){\text{ }}\dfrac{{{\mu _0}}}{{4\pi }}\dfrac{I}{r}\left( {1 + \pi } \right) \\
$
Answer
595.8k+ views
Hint: In the figure there are two current carrying elements that are the circular loop and the finite wire. Use the direct formula for magnetic field at a distance r for a circular loop and finite wire. Then find the net magnetic field at the center. This will help getting the right option.
Complete Step-by-Step solution:
As we know for an finitely long wire the magnetic field (${B_1}$) is given as
${B_1} = \dfrac{{{\mu _0}I}}{{2\pi r}}$ $wb/{m^2}$, where r is the perpendicular length from the center of the circle as we have to calculate the magnetic field at the center of the circle which is nothing but the radius of the circle as line is touching to the circle.
And for a circular loop the magnetic field (${B_2}$) is given as
${B_2} = \dfrac{{{\mu _0}I}}{{2r}}$$wb/{m^2}$, where r is the radius of the circular loop.
So the net magnetic field (B) of their combination is the difference of respective magnetic fields.
As we see that ${B_2}$ is greater than ${B_1}$ as the denominator of ${B_1}$ is larger than the denominator of ${B_2}$therefore net magnetic field is
$ \Rightarrow B = {B_2} - {B_1}$
Now substitute the values we have,
$ \Rightarrow B = \dfrac{{{\mu _0}I}}{{2r}} - \dfrac{{{\mu _0}I}}{{2\pi r}}$
Now take $\dfrac{{{\mu _0}I}}{{2\pi r}}$ as common we have,
$ \Rightarrow B = \dfrac{{{\mu _0}I}}{{2\pi r}}\left( {\pi - 1} \right)$ $wb/{m^2}$
This expression is also written as
$ \Rightarrow B = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2I}}{r}\left( {\pi - 1} \right)$ $wb/{m^2}$
So this is the required answer.
Hence option (B) is the correct answer.
Note – It is always advisable to understand the geometry of the figure while solving problems of this kind as it helps knowing out the basic figures from which current is flowing. Current always leads to production of magnetic fields. The direct formula for magnetic fields due to basic figures need to be remembered, some of them are being mentioned above.
Complete Step-by-Step solution:
As we know for an finitely long wire the magnetic field (${B_1}$) is given as
${B_1} = \dfrac{{{\mu _0}I}}{{2\pi r}}$ $wb/{m^2}$, where r is the perpendicular length from the center of the circle as we have to calculate the magnetic field at the center of the circle which is nothing but the radius of the circle as line is touching to the circle.
And for a circular loop the magnetic field (${B_2}$) is given as
${B_2} = \dfrac{{{\mu _0}I}}{{2r}}$$wb/{m^2}$, where r is the radius of the circular loop.
So the net magnetic field (B) of their combination is the difference of respective magnetic fields.
As we see that ${B_2}$ is greater than ${B_1}$ as the denominator of ${B_1}$ is larger than the denominator of ${B_2}$therefore net magnetic field is
$ \Rightarrow B = {B_2} - {B_1}$
Now substitute the values we have,
$ \Rightarrow B = \dfrac{{{\mu _0}I}}{{2r}} - \dfrac{{{\mu _0}I}}{{2\pi r}}$
Now take $\dfrac{{{\mu _0}I}}{{2\pi r}}$ as common we have,
$ \Rightarrow B = \dfrac{{{\mu _0}I}}{{2\pi r}}\left( {\pi - 1} \right)$ $wb/{m^2}$
This expression is also written as
$ \Rightarrow B = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2I}}{r}\left( {\pi - 1} \right)$ $wb/{m^2}$
So this is the required answer.
Hence option (B) is the correct answer.
Note – It is always advisable to understand the geometry of the figure while solving problems of this kind as it helps knowing out the basic figures from which current is flowing. Current always leads to production of magnetic fields. The direct formula for magnetic fields due to basic figures need to be remembered, some of them are being mentioned above.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

