
The line joining the points \[{\text{(}} - {\text{6}},8{\text{)}}\] and \[{\text{(8,}} - {\text{6)}}\] is divided into four equal parts; find the coordinates of the points of section.
Answer
605.4k+ views
Hint: - Here, we use bisector formulas to find midpoints.
Let \[{\text{A(}} - {\text{6,8)}}\] and \[{\text{B(8,}} - {\text{6)}}\] and \[{\text{P,Q,R}}\] divides \[{\text{AB}}\] in four equal parts \[{\text{Q}}\] divides \[{\text{AB}}\] in \[{\text{1:1}}\],so \[{\text{Q}}\] is the midpoint of \[{\text{AB}}\].
So coordinates of \[{\text{Q}}\] are \[\dfrac{{ - {\text{6 + 8}}}}{2}{\text{,}}\dfrac{{{\text{8}} - {\text{6}}}}{2}\]
\[ \Rightarrow {\text{Q}}(1,1)\]
Similarly ${\text{P}}$ is the midpoint of \[{\text{AQ}}\]
So coordinates of ${\text{P }}$ are \[\dfrac{{ - {\text{6 + 1}}}}{2},\dfrac{{8+1}}{2}\]
\[ \Rightarrow {\text{P}}\left( { - \dfrac{5}{2},\dfrac{9}{2}} \right)\]
And now \[{\text{R }}\] is the midpoint of ${\text{QB}}$
So coordinates of \[{\text{R}}\] are \[\dfrac{{1 + 8}}{2},\dfrac{{1 - 6}}{2}\]
\[ \Rightarrow {\text{R }}\left( {\dfrac{9}{2},\dfrac{{ - 5}}{2}} \right)\]
The points which divide the line in four equal parts are \[\left( { - \dfrac{5}{2},\dfrac{9}{2}} \right);(1,1);\left( {\dfrac{9}{2},\dfrac{{ - 5}}{2}} \right)\]
Note:-Whenever we face such types of questions it is better to denote the coordinate by letter and then bisect the first line and after that bisect that line. Which are made by the bisector of the first line.
Let \[{\text{A(}} - {\text{6,8)}}\] and \[{\text{B(8,}} - {\text{6)}}\] and \[{\text{P,Q,R}}\] divides \[{\text{AB}}\] in four equal parts \[{\text{Q}}\] divides \[{\text{AB}}\] in \[{\text{1:1}}\],so \[{\text{Q}}\] is the midpoint of \[{\text{AB}}\].
So coordinates of \[{\text{Q}}\] are \[\dfrac{{ - {\text{6 + 8}}}}{2}{\text{,}}\dfrac{{{\text{8}} - {\text{6}}}}{2}\]
\[ \Rightarrow {\text{Q}}(1,1)\]
Similarly ${\text{P}}$ is the midpoint of \[{\text{AQ}}\]
So coordinates of ${\text{P }}$ are \[\dfrac{{ - {\text{6 + 1}}}}{2},\dfrac{{8+1}}{2}\]
\[ \Rightarrow {\text{P}}\left( { - \dfrac{5}{2},\dfrac{9}{2}} \right)\]
And now \[{\text{R }}\] is the midpoint of ${\text{QB}}$
So coordinates of \[{\text{R}}\] are \[\dfrac{{1 + 8}}{2},\dfrac{{1 - 6}}{2}\]
\[ \Rightarrow {\text{R }}\left( {\dfrac{9}{2},\dfrac{{ - 5}}{2}} \right)\]
The points which divide the line in four equal parts are \[\left( { - \dfrac{5}{2},\dfrac{9}{2}} \right);(1,1);\left( {\dfrac{9}{2},\dfrac{{ - 5}}{2}} \right)\]
Note:-Whenever we face such types of questions it is better to denote the coordinate by letter and then bisect the first line and after that bisect that line. Which are made by the bisector of the first line.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

