
The limit $ \displaystyle \lim_{x \to {{0}^{+}}}\left( {{\left( x\cos x \right)}^{x}}+{{\left( cosecx \right)}^{\dfrac{1}{\ln x}}}+{{\left( x\sin x \right)}^{x}} \right) $ is equal to \[\]
A.2\[\]
B. $ 2+e $ \[\]
C. $ 2+\dfrac{1}{e} $ \[\]
D.3\[\]
Answer
567.6k+ views
Hint: We recall use sum rule of limits to separately evaluate $ \displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\cos x \right)}^{x}},\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\sin x \right)}^{x}} $ and $ \displaystyle \lim_{x \to {{0}^{+}}}{{\left( \cos x \right)}^{\dfrac{1}{\ln x}}} $ . We evaluate the $ \displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\cos x \right)}^{x}},\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\sin x \right)}^{x}} $ by using definition of logarithm $ {{e}^{\ln a}}=a $ . We evaluate $ \displaystyle \lim_{x \to {{0}^{+}}}{{\left( \operatorname{cosec}x \right)}^{\dfrac{1}{\ln x}}} $ by taking $ \operatorname{cosec}x=\dfrac{1}{\sin x} $ and then taking logarithm both side of $ y=\displaystyle \lim_{x \to {{0}^{+}}}{{\left( \operatorname{cosec}x \right)}^{\dfrac{1}{\ln x}}} $ and then using L’hospital rule for $ \dfrac{\infty }{\infty } $ form. \[\]
Complete step by step answer:
We know that we can use L’hospital rule to evaluate limits if the function is in the indeterminate forms like $ \dfrac{0}{0},\dfrac{\infty }{\infty },0\times \infty ,\infty -\infty $ etc. The L’hospital rule is stated for $ \dfrac{\infty }{\infty } $ is stated as follows: if $ \displaystyle \lim_{x \to c}f\left( x \right)=\infty ,\displaystyle \lim_{x \to c}g\left( x \right)=\infty $ , $ {{g}^{'}}\left( x \right)\ne 0 $ for all $ x\ne c $ in the domain and $ \dfrac{{{f}^{'}}\left( x \right)}{{{g}^{'}}\left( x \right)} $ exist then
\[\displaystyle \lim_{x \to c}\dfrac{f\left( x \right)}{g\left( x \right)}=\displaystyle \lim_{x \to c}\dfrac{{{f}^{'}}\left( x \right)}{{{g}^{'}}\left( x \right)}\]
Let us evaluate the limit $ \displaystyle \lim_{x \to {{0}^{+}}}x\ln x $ using l’hospital rule for indeterminate form $ \dfrac{\infty }{\infty } $ which we are going to use later. We have;
\[\displaystyle \lim_{x \to {{0}^{+}}}x\ln x=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{\ln x}{\dfrac{1}{x}}=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{\dfrac{1}{x}}{-\dfrac{1}{{{x}^{2}}}}=\displaystyle \lim_{x \to {{0}^{+}}}\left( -x \right)=0\]
We are given the following right hand limit to evaluate at $ x=0 $ ,
\[\displaystyle \lim_{x \to {{0}^{+}}}\left( {{\left( x\cos x \right)}^{x}}+{{\left( \operatorname{cosec}x \right)}^{\dfrac{1}{\ln x}}}+{{\left( x\sin x \right)}^{x}} \right)\]
We use law of addition of limits and have;
\[\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\cos x \right)}^{x}}+\displaystyle \lim_{x \to {{0}^{+}}}{{\left( cosecx \right)}^{\dfrac{1}{\ln x}}}+\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\sin x \right)}^{x}}={{L}_{1}}+{{L}_{2}}+{{L}_{3}}\left( \text{say} \right)\]
Let us evaluate the first limit $ {{L}_{1}}=\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\cos x \right)}^{x}} $ by using exponential identity $ {{\left( ab \right)}^{m}}={{a}^{m}}\times {{b}^{m}} $ for $ a=x,b=\cos x,m=x $ to have;
\[\begin{align}
& {{L}_{1}}=\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\cos x \right)}^{x}} \\
& \Rightarrow {{L}_{1}}=\displaystyle \lim_{x \to {{0}^{+}}}{{x}^{x}}{{\left( \cos x \right)}^{x}} \\
\end{align}\]
We use the definition of logarithm $ {{e}^{\ln a}}=a $ for $ a={{x}^{x}}\Rightarrow \ln a=x\ln x $ in the above step to have;
\[\Rightarrow {{L}_{1}}=\displaystyle \lim_{x \to {{0}^{+}}}{{e}^{x\ln x}}{{\left( \cos x \right)}^{x}}\]
We use law of multiplication of limits and put previously obtained $ \displaystyle \lim_{x \to {{0}^{+}}}x\ln x=0 $ to have;
\[\begin{align}
& \Rightarrow {{L}_{1}}={{e}^{\displaystyle \lim_{x \to {{0}^{+}}}x\ln x}}\cdot \displaystyle \lim_{x \to {{0}^{+}}}{{\left( \cos x \right)}^{x}} \\
& \Rightarrow {{L}_{1}}={{e}^{0}}\cdot {{\left( \cos 0 \right)}^{0}} \\
& \Rightarrow {{L}_{1}}==1\cdot {{1}^{0}}=1\cdot 1=1 \\
\end{align}\]
Similarly we evaluate $ {{L}_{3}}=\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\sin x \right)}^{x}} $ by using exponential identity $ {{\left( ab \right)}^{m}}={{a}^{m}}\times {{b}^{m}} $ for $ a=x,b=\sin x,m=x $ to have;
\[\begin{align}
& {{L}_{3}}=\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\sin x \right)}^{x}} \\
& \Rightarrow {{L}_{3}}=\displaystyle \lim_{x \to {{0}^{+}}}{{x}^{x}}{{\left( \sin x \right)}^{x}} \\
\end{align}\]
We use law of multiplication of limits and have;
$ \Rightarrow {{L}_{3}}=\displaystyle \lim_{x \to {{0}^{+}}}{{x}^{x}}\cdot \displaystyle \lim_{x \to {{0}^{+}}}{{\left( \sin x \right)}^{x}} $
We use the definition of logarithm $ {{e}^{\ln a}}=a $ for $ a={{x}^{x}}\Rightarrow \ln a=x\ln x $ for the first limit and then $ a={{\left( \sin x \right)}^{x}}\Rightarrow \ln a=x\ln \sin x $ for in the above step to have;
\[\begin{align}
& \Rightarrow {{L}_{3}}=\displaystyle \lim_{x \to {{0}^{+}}}{{e}^{x\ln x}}\cdot \displaystyle \lim_{x \to {{0}^{+}}}{{e}^{x\ln \sin x}} \\
& \Rightarrow {{L}_{3}}={{e}^{\displaystyle \lim_{x \to {{0}^{+}}}x\ln x}}\cdot {{e}^{\displaystyle \lim_{x \to {{0}^{+}}}x\ln \sin x}} \\
\end{align}\]
We use put previously obtained $ \displaystyle \lim_{x \to {{0}^{+}}}x\ln x=0 $
\[\begin{align}
& \Rightarrow {{L}_{3}}=1\cdot {{e}^{\displaystyle \lim_{x \to {{0}^{+}}}x\ln \sin x}} \\
& \Rightarrow {{L}_{3}}={{e}^{\displaystyle \lim_{x \to {{0}^{+}}}x\ln \sin x}} \\
& \Rightarrow {{L}_{3}}={{e}^{\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{\ln \sin x}{\dfrac{1}{x}}}} \\
\end{align}\]
We use l’hospital rule for indeterminate form $ \dfrac{\infty }{\infty } $ and differentiate the numerator and denominator to have;
\[\begin{align}
& \Rightarrow {{L}_{3}}={{e}^{\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{\cos x\cdot \dfrac{1}{\sin x}}{-\dfrac{1}{{{x}^{2}}}}}} \\
& \Rightarrow {{L}_{3}}={{e}^{\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{-{{x}^{2}}\cos x}{\sin x}}} \\
\end{align}\]
We again use l’hospital rule for indeterminate form $ \dfrac{0}{0} $ and differentiate the numerator and denominator to have;
\[\begin{align}
& \Rightarrow {{L}_{3}}={{e}^{\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{{{x}^{2}}\sin x-2x\cos x}{\cos x}}} \\
& \Rightarrow {{L}_{3}}={{e}^{\dfrac{0}{1}}}={{e}^{0}}=1 \\
\end{align}\]
Now let us evaluate $ {{L}_{2}}=\displaystyle \lim_{x \to {{0}^{+}}}{{\left( cosecx \right)}^{\dfrac{1}{\ln x}}} $ . Let us have $ y=\displaystyle \lim_{x \to {{0}^{+}}}{{\left( \operatorname{cosec}x \right)}^{\dfrac{1}{\ln x}}} $ and then use reciprocal relation between sine and cosecant that is $ \operatorname{cosec}\theta =\dfrac{1}{\sin \theta } $ to have;
\[y=\displaystyle \lim_{x \to {{0}^{+}}}{{\left( \dfrac{1}{\sin x} \right)}^{\dfrac{1}{\ln x}}}\]
We take logarithm both sides to have;
\[\begin{align}
& \ln y=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{1}{\ln x}\ln \left( \dfrac{1}{\sin x} \right) \\
& \Rightarrow \ln y=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{1}{\ln x}\left( \ln 1-\ln \sin x \right) \\
& \Rightarrow \ln y=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{1}{\ln x}\left( -\ln \sin x \right)\left( \because \ln 1=0 \right) \\
& \Rightarrow \ln y=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{-\ln \sin x}{\ln x} \\
\end{align}\]
We use l’hospital rule for indeterminate form $ \dfrac{\infty }{\infty } $ and differentiate the numerator and denominator to have;
\[\begin{align}
& \Rightarrow \ln y=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{\cos x\cdot \dfrac{-1}{\sin x}}{\dfrac{1}{x}} \\
& \Rightarrow \ln y=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{-x\cos x}{\sin x} \\
\end{align}\]
We again use l’hospital rule for indeterminate form $ \dfrac{0}{0} $ and differentiate the numerator and denominator to have;
\[\begin{align}
& \Rightarrow \ln y=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{x\sin x-\cos x}{\cos x} \\
& \Rightarrow \ln y=\dfrac{0\cdot 0-1}{1} \\
& \Rightarrow \ln y=-1 \\
\end{align}\]
We use definition of natural logarithm to have;
\[\begin{align}
& \Rightarrow y={{e}^{-1}} \\
& \Rightarrow \displaystyle \lim_{x \to {{0}^{+}}}{{\left( cosecx \right)}^{\dfrac{1}{\ln x}}}={{e}^{-1}} \\
& \Rightarrow {{L}_{2}}=\dfrac{1}{e} \\
\end{align}\]
So the evaluated limit is
\[\begin{align}
& \displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\cos x \right)}^{x}}+\displaystyle \lim_{x \to {{0}^{+}}}{{\left( cosecx \right)}^{\dfrac{1}{\ln x}}}+\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\sin x \right)}^{x}}={{L}_{1}}+{{L}_{2}}+{{L}_{3}} \\
& \Rightarrow \displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\cos x \right)}^{x}}+\displaystyle \lim_{x \to {{0}^{+}}}{{\left( cosecx \right)}^{\dfrac{1}{\ln x}}}+\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\sin x \right)}^{x}}=1+\dfrac{1}{e}+1=2+\dfrac{1}{e} \\
\end{align}\]
So the correct choice is C.\[\]
Note:
We note that since we are asked to evaluate the right hand limit that is $ x>0 $ , the function $ \ln x $ is well defined and $ \displaystyle \lim_{x \to {{0}^{+}}}\sin x=\sin x,\displaystyle \lim_{x \to {{0}^{+}}}\cos x=\cos x, $ We know from the laws of limits for the limit for two real valued functions $ f\left( x \right) $ and $ g\left( x \right) $ at point $ x=a $ for both functions then by law of addition in limits we have $ \displaystyle \lim_{x \to a}f\left( x \right)+\displaystyle \lim_{x \to a}g\left( x \right)=\displaystyle \lim_{x \to a}\left( f\left( x \right)+g\left( x \right) \right) $ and by law of multiplication of limits $ \displaystyle \lim_{x \to a}f\left( x \right)\cdot \displaystyle \lim_{x \to a}g\left( x \right)=\displaystyle \lim_{x \to a}\left( f\left( x \right)\cdot g\left( x \right) \right) $ . We should remember the logarithmic identities of quotient $ \log \left( \dfrac{a}{b} \right)=\log a-\log b $ .
Complete step by step answer:
We know that we can use L’hospital rule to evaluate limits if the function is in the indeterminate forms like $ \dfrac{0}{0},\dfrac{\infty }{\infty },0\times \infty ,\infty -\infty $ etc. The L’hospital rule is stated for $ \dfrac{\infty }{\infty } $ is stated as follows: if $ \displaystyle \lim_{x \to c}f\left( x \right)=\infty ,\displaystyle \lim_{x \to c}g\left( x \right)=\infty $ , $ {{g}^{'}}\left( x \right)\ne 0 $ for all $ x\ne c $ in the domain and $ \dfrac{{{f}^{'}}\left( x \right)}{{{g}^{'}}\left( x \right)} $ exist then
\[\displaystyle \lim_{x \to c}\dfrac{f\left( x \right)}{g\left( x \right)}=\displaystyle \lim_{x \to c}\dfrac{{{f}^{'}}\left( x \right)}{{{g}^{'}}\left( x \right)}\]
Let us evaluate the limit $ \displaystyle \lim_{x \to {{0}^{+}}}x\ln x $ using l’hospital rule for indeterminate form $ \dfrac{\infty }{\infty } $ which we are going to use later. We have;
\[\displaystyle \lim_{x \to {{0}^{+}}}x\ln x=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{\ln x}{\dfrac{1}{x}}=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{\dfrac{1}{x}}{-\dfrac{1}{{{x}^{2}}}}=\displaystyle \lim_{x \to {{0}^{+}}}\left( -x \right)=0\]
We are given the following right hand limit to evaluate at $ x=0 $ ,
\[\displaystyle \lim_{x \to {{0}^{+}}}\left( {{\left( x\cos x \right)}^{x}}+{{\left( \operatorname{cosec}x \right)}^{\dfrac{1}{\ln x}}}+{{\left( x\sin x \right)}^{x}} \right)\]
We use law of addition of limits and have;
\[\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\cos x \right)}^{x}}+\displaystyle \lim_{x \to {{0}^{+}}}{{\left( cosecx \right)}^{\dfrac{1}{\ln x}}}+\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\sin x \right)}^{x}}={{L}_{1}}+{{L}_{2}}+{{L}_{3}}\left( \text{say} \right)\]
Let us evaluate the first limit $ {{L}_{1}}=\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\cos x \right)}^{x}} $ by using exponential identity $ {{\left( ab \right)}^{m}}={{a}^{m}}\times {{b}^{m}} $ for $ a=x,b=\cos x,m=x $ to have;
\[\begin{align}
& {{L}_{1}}=\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\cos x \right)}^{x}} \\
& \Rightarrow {{L}_{1}}=\displaystyle \lim_{x \to {{0}^{+}}}{{x}^{x}}{{\left( \cos x \right)}^{x}} \\
\end{align}\]
We use the definition of logarithm $ {{e}^{\ln a}}=a $ for $ a={{x}^{x}}\Rightarrow \ln a=x\ln x $ in the above step to have;
\[\Rightarrow {{L}_{1}}=\displaystyle \lim_{x \to {{0}^{+}}}{{e}^{x\ln x}}{{\left( \cos x \right)}^{x}}\]
We use law of multiplication of limits and put previously obtained $ \displaystyle \lim_{x \to {{0}^{+}}}x\ln x=0 $ to have;
\[\begin{align}
& \Rightarrow {{L}_{1}}={{e}^{\displaystyle \lim_{x \to {{0}^{+}}}x\ln x}}\cdot \displaystyle \lim_{x \to {{0}^{+}}}{{\left( \cos x \right)}^{x}} \\
& \Rightarrow {{L}_{1}}={{e}^{0}}\cdot {{\left( \cos 0 \right)}^{0}} \\
& \Rightarrow {{L}_{1}}==1\cdot {{1}^{0}}=1\cdot 1=1 \\
\end{align}\]
Similarly we evaluate $ {{L}_{3}}=\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\sin x \right)}^{x}} $ by using exponential identity $ {{\left( ab \right)}^{m}}={{a}^{m}}\times {{b}^{m}} $ for $ a=x,b=\sin x,m=x $ to have;
\[\begin{align}
& {{L}_{3}}=\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\sin x \right)}^{x}} \\
& \Rightarrow {{L}_{3}}=\displaystyle \lim_{x \to {{0}^{+}}}{{x}^{x}}{{\left( \sin x \right)}^{x}} \\
\end{align}\]
We use law of multiplication of limits and have;
$ \Rightarrow {{L}_{3}}=\displaystyle \lim_{x \to {{0}^{+}}}{{x}^{x}}\cdot \displaystyle \lim_{x \to {{0}^{+}}}{{\left( \sin x \right)}^{x}} $
We use the definition of logarithm $ {{e}^{\ln a}}=a $ for $ a={{x}^{x}}\Rightarrow \ln a=x\ln x $ for the first limit and then $ a={{\left( \sin x \right)}^{x}}\Rightarrow \ln a=x\ln \sin x $ for in the above step to have;
\[\begin{align}
& \Rightarrow {{L}_{3}}=\displaystyle \lim_{x \to {{0}^{+}}}{{e}^{x\ln x}}\cdot \displaystyle \lim_{x \to {{0}^{+}}}{{e}^{x\ln \sin x}} \\
& \Rightarrow {{L}_{3}}={{e}^{\displaystyle \lim_{x \to {{0}^{+}}}x\ln x}}\cdot {{e}^{\displaystyle \lim_{x \to {{0}^{+}}}x\ln \sin x}} \\
\end{align}\]
We use put previously obtained $ \displaystyle \lim_{x \to {{0}^{+}}}x\ln x=0 $
\[\begin{align}
& \Rightarrow {{L}_{3}}=1\cdot {{e}^{\displaystyle \lim_{x \to {{0}^{+}}}x\ln \sin x}} \\
& \Rightarrow {{L}_{3}}={{e}^{\displaystyle \lim_{x \to {{0}^{+}}}x\ln \sin x}} \\
& \Rightarrow {{L}_{3}}={{e}^{\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{\ln \sin x}{\dfrac{1}{x}}}} \\
\end{align}\]
We use l’hospital rule for indeterminate form $ \dfrac{\infty }{\infty } $ and differentiate the numerator and denominator to have;
\[\begin{align}
& \Rightarrow {{L}_{3}}={{e}^{\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{\cos x\cdot \dfrac{1}{\sin x}}{-\dfrac{1}{{{x}^{2}}}}}} \\
& \Rightarrow {{L}_{3}}={{e}^{\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{-{{x}^{2}}\cos x}{\sin x}}} \\
\end{align}\]
We again use l’hospital rule for indeterminate form $ \dfrac{0}{0} $ and differentiate the numerator and denominator to have;
\[\begin{align}
& \Rightarrow {{L}_{3}}={{e}^{\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{{{x}^{2}}\sin x-2x\cos x}{\cos x}}} \\
& \Rightarrow {{L}_{3}}={{e}^{\dfrac{0}{1}}}={{e}^{0}}=1 \\
\end{align}\]
Now let us evaluate $ {{L}_{2}}=\displaystyle \lim_{x \to {{0}^{+}}}{{\left( cosecx \right)}^{\dfrac{1}{\ln x}}} $ . Let us have $ y=\displaystyle \lim_{x \to {{0}^{+}}}{{\left( \operatorname{cosec}x \right)}^{\dfrac{1}{\ln x}}} $ and then use reciprocal relation between sine and cosecant that is $ \operatorname{cosec}\theta =\dfrac{1}{\sin \theta } $ to have;
\[y=\displaystyle \lim_{x \to {{0}^{+}}}{{\left( \dfrac{1}{\sin x} \right)}^{\dfrac{1}{\ln x}}}\]
We take logarithm both sides to have;
\[\begin{align}
& \ln y=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{1}{\ln x}\ln \left( \dfrac{1}{\sin x} \right) \\
& \Rightarrow \ln y=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{1}{\ln x}\left( \ln 1-\ln \sin x \right) \\
& \Rightarrow \ln y=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{1}{\ln x}\left( -\ln \sin x \right)\left( \because \ln 1=0 \right) \\
& \Rightarrow \ln y=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{-\ln \sin x}{\ln x} \\
\end{align}\]
We use l’hospital rule for indeterminate form $ \dfrac{\infty }{\infty } $ and differentiate the numerator and denominator to have;
\[\begin{align}
& \Rightarrow \ln y=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{\cos x\cdot \dfrac{-1}{\sin x}}{\dfrac{1}{x}} \\
& \Rightarrow \ln y=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{-x\cos x}{\sin x} \\
\end{align}\]
We again use l’hospital rule for indeterminate form $ \dfrac{0}{0} $ and differentiate the numerator and denominator to have;
\[\begin{align}
& \Rightarrow \ln y=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{x\sin x-\cos x}{\cos x} \\
& \Rightarrow \ln y=\dfrac{0\cdot 0-1}{1} \\
& \Rightarrow \ln y=-1 \\
\end{align}\]
We use definition of natural logarithm to have;
\[\begin{align}
& \Rightarrow y={{e}^{-1}} \\
& \Rightarrow \displaystyle \lim_{x \to {{0}^{+}}}{{\left( cosecx \right)}^{\dfrac{1}{\ln x}}}={{e}^{-1}} \\
& \Rightarrow {{L}_{2}}=\dfrac{1}{e} \\
\end{align}\]
So the evaluated limit is
\[\begin{align}
& \displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\cos x \right)}^{x}}+\displaystyle \lim_{x \to {{0}^{+}}}{{\left( cosecx \right)}^{\dfrac{1}{\ln x}}}+\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\sin x \right)}^{x}}={{L}_{1}}+{{L}_{2}}+{{L}_{3}} \\
& \Rightarrow \displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\cos x \right)}^{x}}+\displaystyle \lim_{x \to {{0}^{+}}}{{\left( cosecx \right)}^{\dfrac{1}{\ln x}}}+\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x\sin x \right)}^{x}}=1+\dfrac{1}{e}+1=2+\dfrac{1}{e} \\
\end{align}\]
So the correct choice is C.\[\]
Note:
We note that since we are asked to evaluate the right hand limit that is $ x>0 $ , the function $ \ln x $ is well defined and $ \displaystyle \lim_{x \to {{0}^{+}}}\sin x=\sin x,\displaystyle \lim_{x \to {{0}^{+}}}\cos x=\cos x, $ We know from the laws of limits for the limit for two real valued functions $ f\left( x \right) $ and $ g\left( x \right) $ at point $ x=a $ for both functions then by law of addition in limits we have $ \displaystyle \lim_{x \to a}f\left( x \right)+\displaystyle \lim_{x \to a}g\left( x \right)=\displaystyle \lim_{x \to a}\left( f\left( x \right)+g\left( x \right) \right) $ and by law of multiplication of limits $ \displaystyle \lim_{x \to a}f\left( x \right)\cdot \displaystyle \lim_{x \to a}g\left( x \right)=\displaystyle \lim_{x \to a}\left( f\left( x \right)\cdot g\left( x \right) \right) $ . We should remember the logarithmic identities of quotient $ \log \left( \dfrac{a}{b} \right)=\log a-\log b $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

