
The least positive integer $n$ which will reduce ${{\left( \dfrac{i-1}{i+1} \right)}^{n}}$ to a real number is
A. 2
B. 3
C. 4
D. 5
Answer
495.6k+ views
Hint:We first rationalise the fraction form of $\dfrac{i-1}{i+1}$. We multiply $i-1$ to both the numerator and denominator of the fraction. We use the relations of imaginary numbers ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$. We replace the values to find the least positive integer $n$.
Complete step by step answer:
We first apply the rationalisation of complex numbers for $\dfrac{i-1}{i+1}$.
We multiply $i-1$ to both the numerator and denominator of the fraction.
So, \[\dfrac{i-1}{i+1}\times \dfrac{i-1}{i-1}=\dfrac{{{\left( i-1 \right)}^{2}}}{{{i}^{2}}-1}\].
We used the theorem of \[\left( a+b \right)\times \left( a-b \right)={{a}^{2}}-{{b}^{2}}\].
We now break the square using the theorem of \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\].
So, \[\dfrac{i-1}{i+1}=\dfrac{{{i}^{2}}-2i+1}{{{i}^{2}}-1}\].
We have the relations for imaginary $i$ where ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$. We place the values and get
\[\dfrac{i-1}{i+1}=\dfrac{{{i}^{2}}-2i+1}{{{i}^{2}}-1} \\
\Rightarrow \dfrac{i-1}{i+1}=\dfrac{-1-2i+1}{-1-1} \\
\Rightarrow \dfrac{i-1}{i+1}=i \\ \]
Therefore, ${{\left( \dfrac{i-1}{i+1} \right)}^{n}}={{i}^{n}}$. From the above relation relations ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$, we can see that the least positive integer $n$ which will reduce ${{\left( \dfrac{i-1}{i+1} \right)}^{n}}$ to a real number is 2.
Hence, the correct option is A.
Note:The integer power value of every eve number on $i$ will give the real number. Odd numbers of power value give back the imaginary part. The relation ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$ can also be represented as the unit circle on the complex plane.
Complete step by step answer:
We first apply the rationalisation of complex numbers for $\dfrac{i-1}{i+1}$.
We multiply $i-1$ to both the numerator and denominator of the fraction.
So, \[\dfrac{i-1}{i+1}\times \dfrac{i-1}{i-1}=\dfrac{{{\left( i-1 \right)}^{2}}}{{{i}^{2}}-1}\].
We used the theorem of \[\left( a+b \right)\times \left( a-b \right)={{a}^{2}}-{{b}^{2}}\].
We now break the square using the theorem of \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\].
So, \[\dfrac{i-1}{i+1}=\dfrac{{{i}^{2}}-2i+1}{{{i}^{2}}-1}\].
We have the relations for imaginary $i$ where ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$. We place the values and get
\[\dfrac{i-1}{i+1}=\dfrac{{{i}^{2}}-2i+1}{{{i}^{2}}-1} \\
\Rightarrow \dfrac{i-1}{i+1}=\dfrac{-1-2i+1}{-1-1} \\
\Rightarrow \dfrac{i-1}{i+1}=i \\ \]
Therefore, ${{\left( \dfrac{i-1}{i+1} \right)}^{n}}={{i}^{n}}$. From the above relation relations ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$, we can see that the least positive integer $n$ which will reduce ${{\left( \dfrac{i-1}{i+1} \right)}^{n}}$ to a real number is 2.
Hence, the correct option is A.
Note:The integer power value of every eve number on $i$ will give the real number. Odd numbers of power value give back the imaginary part. The relation ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$ can also be represented as the unit circle on the complex plane.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

