
The least positive integer \[n\] such that \[1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - ....... - \dfrac{2}{{{3^{n - 1}}}} < \dfrac{1}{{100}}\]
A.\[4\]
B.\[5\]
C.\[6\]
D.\[7\]
Answer
575.4k+ views
Hint: Here we substitute value from each option and check if the value on LHS is less than the value on RHS of the inequality. We can solve this question using Trial and error method.
Complete step-by-step answer:
We are given \[1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - ....... - \dfrac{2}{{{3^{n - 1}}}} < \dfrac{1}{{100}}\]
We first find the value of RHS to which we will compare the sum of terms on LHS.
We have RHS as \[\dfrac{1}{{100}}\]which can be written in the decimal form as \[0.01\]
So, we take the value in RHS as \[0.01\].
Now we carefully assess each option.
Option A.
Here the value of \[n = 4\].
We substitute the value of \[n = 4\] in the LHS of the equation.
\[
\Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - ....... - \dfrac{2}{{{3^{4 - 1}}}} = 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} \\
\Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - ....... - \dfrac{2}{{{3^3}}} = 1 - \dfrac{2}{3} - \dfrac{2}{9} - \dfrac{2}{{27}} \\
\]
Now we take LCM
\[
\Rightarrow \dfrac{{27 - 2 \times 9 - 2 \times 3 - 2}}{{27}} \\
\Rightarrow \dfrac{{27 - 18 - 6 - 2}}{{27}} \\
\Rightarrow \dfrac{1}{{27}} \\
\]
\[ \Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} = \dfrac{1}{{27}}\] … (1)
Calculating the value of \[\dfrac{1}{{27}}\] we get \[0.03\]
Now since \[0.03 > 0.01\]
Therefore, option A is rejected.
Option B.
Here the value of \[n = 5\].
We substitute the value of \[n = 5\] in the LHS of the equation.
\[ \Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - ....... - \dfrac{2}{{{3^{5 - 1}}}} = 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}}\]
We know from equation (1) that \[1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} = \dfrac{1}{{27}}\] , substitute the value in above equation
\[ \Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}} = \dfrac{1}{{27}} - \dfrac{2}{{81}}\]
Now we take LCM
\[
\Rightarrow \dfrac{{1 \times 3 - 2}}{{81}} \\
\Rightarrow \dfrac{{3 - 2}}{{81}} \\
\Rightarrow \dfrac{1}{{81}} \\
\]
\[ \Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}} = \dfrac{1}{{81}}\] … (2)
Calculating the value of \[\dfrac{1}{{81}}\] we get \[0.012\]
Now since \[0.012 > 0.010\]
Therefore, option B is rejected.
Option C.
Here the value of \[n = 6\].
We substitute the value of \[n = 6\] in the LHS of the equation.
\[ \Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - ....... - \dfrac{2}{{{3^{6 - 1}}}} = 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}} - \dfrac{2}{{{3^5}}}\]
We know from equation (2) that \[1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}} = \dfrac{1}{{81}}\] , substitute the value in above equation
\[ \Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}} - \dfrac{2}{{{3^5}}} = \dfrac{1}{{81}} - \dfrac{2}{{273}}\]
Now we take LCM
\[
\Rightarrow \dfrac{{1 \times 3 - 2}}{{273}} \\
\Rightarrow \dfrac{{3 - 2}}{{273}} \\
\Rightarrow \dfrac{1}{{273}} \\
\]
\[ \Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}} - \dfrac{2}{{{3^5}}} = \dfrac{1}{{273}}\] … (3)
Calculating the value of \[\dfrac{1}{{273}}\] we get \[0.003\]
Now since \[0.003 < 0.01\]
Therefore, option C is accepted.
Therefore, least positive integer \[n = 6\]
Now since option D has n greater than 6, we will not check for option D as we have to find the least value of n and we have the least value as 6.
So, option C is correct.
Note: Students many times make the mistake of calculating the LCM of all the values again in each step which makes our calculation complex, we should always use the previous deductions to solve further parts. Also, while comparing the decimal values, always keep in mind the position of decimal.
Complete step-by-step answer:
We are given \[1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - ....... - \dfrac{2}{{{3^{n - 1}}}} < \dfrac{1}{{100}}\]
We first find the value of RHS to which we will compare the sum of terms on LHS.
We have RHS as \[\dfrac{1}{{100}}\]which can be written in the decimal form as \[0.01\]
So, we take the value in RHS as \[0.01\].
Now we carefully assess each option.
Option A.
Here the value of \[n = 4\].
We substitute the value of \[n = 4\] in the LHS of the equation.
\[
\Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - ....... - \dfrac{2}{{{3^{4 - 1}}}} = 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} \\
\Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - ....... - \dfrac{2}{{{3^3}}} = 1 - \dfrac{2}{3} - \dfrac{2}{9} - \dfrac{2}{{27}} \\
\]
Now we take LCM
\[
\Rightarrow \dfrac{{27 - 2 \times 9 - 2 \times 3 - 2}}{{27}} \\
\Rightarrow \dfrac{{27 - 18 - 6 - 2}}{{27}} \\
\Rightarrow \dfrac{1}{{27}} \\
\]
\[ \Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} = \dfrac{1}{{27}}\] … (1)
Calculating the value of \[\dfrac{1}{{27}}\] we get \[0.03\]
Now since \[0.03 > 0.01\]
Therefore, option A is rejected.
Option B.
Here the value of \[n = 5\].
We substitute the value of \[n = 5\] in the LHS of the equation.
\[ \Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - ....... - \dfrac{2}{{{3^{5 - 1}}}} = 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}}\]
We know from equation (1) that \[1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} = \dfrac{1}{{27}}\] , substitute the value in above equation
\[ \Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}} = \dfrac{1}{{27}} - \dfrac{2}{{81}}\]
Now we take LCM
\[
\Rightarrow \dfrac{{1 \times 3 - 2}}{{81}} \\
\Rightarrow \dfrac{{3 - 2}}{{81}} \\
\Rightarrow \dfrac{1}{{81}} \\
\]
\[ \Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}} = \dfrac{1}{{81}}\] … (2)
Calculating the value of \[\dfrac{1}{{81}}\] we get \[0.012\]
Now since \[0.012 > 0.010\]
Therefore, option B is rejected.
Option C.
Here the value of \[n = 6\].
We substitute the value of \[n = 6\] in the LHS of the equation.
\[ \Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - ....... - \dfrac{2}{{{3^{6 - 1}}}} = 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}} - \dfrac{2}{{{3^5}}}\]
We know from equation (2) that \[1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}} = \dfrac{1}{{81}}\] , substitute the value in above equation
\[ \Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}} - \dfrac{2}{{{3^5}}} = \dfrac{1}{{81}} - \dfrac{2}{{273}}\]
Now we take LCM
\[
\Rightarrow \dfrac{{1 \times 3 - 2}}{{273}} \\
\Rightarrow \dfrac{{3 - 2}}{{273}} \\
\Rightarrow \dfrac{1}{{273}} \\
\]
\[ \Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}} - \dfrac{2}{{{3^5}}} = \dfrac{1}{{273}}\] … (3)
Calculating the value of \[\dfrac{1}{{273}}\] we get \[0.003\]
Now since \[0.003 < 0.01\]
Therefore, option C is accepted.
Therefore, least positive integer \[n = 6\]
Now since option D has n greater than 6, we will not check for option D as we have to find the least value of n and we have the least value as 6.
So, option C is correct.
Note: Students many times make the mistake of calculating the LCM of all the values again in each step which makes our calculation complex, we should always use the previous deductions to solve further parts. Also, while comparing the decimal values, always keep in mind the position of decimal.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

