
The least number divisible by 15, 20, 24, 32 and 36 is ?
A. 1440
B. 1660
C. 2880
D. None of these
Answer
575.4k+ views
Hint: Here we find the least number which is divisible by these 5 numbers by calculating the LCM of the 5 numbers. We write each number in the form of its prime factors and write the LCM of the numbers as multiplication of prime factors with their highest powers.
* Prime factorization is a process of writing a number in terms of its prime factors.
* We use the concept \[\underbrace {a \times a..... \times a}_n = {a^n}\]
Complete step-by-step answer:
We are given the numbers 15, 20, 24, 32 and 36.
We write the prime factorization of each number.
\[15 = 3 \times 5\]
\[20 = 2 \times 2 \times 5\]
\[24 = 2 \times 2 \times 2 \times 3\]
\[32 = 2 \times 2 \times 2 \times 2 \times 2\]
\[36 = 2 \times 2 \times 3 \times 3\]
Now use the concept of \[\underbrace {a \times a..... \times a}_n = {a^n}\]to write the prime factorization in a simple form where n represents the power of the prime factors.
\[15 = 3 \times 5\]
\[20 = {2^2} \times 5\]
\[24 = {2^3} \times 3\]
\[32 = {2^5}\]
\[36 = {2^2} \times {3^2}\]
Now we calculate the LCM of the numbers by multiplying the maximum degree terms of prime factors.
Since, the highest power of 2 is 5, highest power of 3 is 2 and highest power of 5 is 1.
\[ \Rightarrow \]LCM \[ = {2^5} \times {3^2} \times 5\]
Calculate the value of RHS of the equation.
\[ \Rightarrow \]LCM \[ = 32 \times 9 \times 5\]
\[ \Rightarrow \]LCM \[ = 1440\]
So, option A is correct.
Note: Students might get confused between the concept of highest common factor (HCF) and Lowest common multiple (LCM). LCM gives us the lowest common multiple of various numbers and HCF gives us the highest common divisor of the numbers. Keep in mind that while calculating the LCM we have to cover all the factors of the number and in HCF we multiply only the common prime factors having the lowest power.
Students many times write the highest power of a prime factor and then again write that prime factor thinking that it is occurring in the prime factorization of another number which is wrong, once you’ve taken the highest power, which means you have covered all possible factors of that prime number.
* Prime factorization is a process of writing a number in terms of its prime factors.
* We use the concept \[\underbrace {a \times a..... \times a}_n = {a^n}\]
Complete step-by-step answer:
We are given the numbers 15, 20, 24, 32 and 36.
We write the prime factorization of each number.
\[15 = 3 \times 5\]
\[20 = 2 \times 2 \times 5\]
\[24 = 2 \times 2 \times 2 \times 3\]
\[32 = 2 \times 2 \times 2 \times 2 \times 2\]
\[36 = 2 \times 2 \times 3 \times 3\]
Now use the concept of \[\underbrace {a \times a..... \times a}_n = {a^n}\]to write the prime factorization in a simple form where n represents the power of the prime factors.
\[15 = 3 \times 5\]
\[20 = {2^2} \times 5\]
\[24 = {2^3} \times 3\]
\[32 = {2^5}\]
\[36 = {2^2} \times {3^2}\]
Now we calculate the LCM of the numbers by multiplying the maximum degree terms of prime factors.
Since, the highest power of 2 is 5, highest power of 3 is 2 and highest power of 5 is 1.
\[ \Rightarrow \]LCM \[ = {2^5} \times {3^2} \times 5\]
Calculate the value of RHS of the equation.
\[ \Rightarrow \]LCM \[ = 32 \times 9 \times 5\]
\[ \Rightarrow \]LCM \[ = 1440\]
So, option A is correct.
Note: Students might get confused between the concept of highest common factor (HCF) and Lowest common multiple (LCM). LCM gives us the lowest common multiple of various numbers and HCF gives us the highest common divisor of the numbers. Keep in mind that while calculating the LCM we have to cover all the factors of the number and in HCF we multiply only the common prime factors having the lowest power.
Students many times write the highest power of a prime factor and then again write that prime factor thinking that it is occurring in the prime factorization of another number which is wrong, once you’ve taken the highest power, which means you have covered all possible factors of that prime number.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

Master Class 7 Social Science: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 English: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

i What trees does Mr Wonka mention Which tree does class 7 english CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

Write a letter to the editor of the national daily class 7 english CBSE

Welcome speech for Christmas day celebration class 7 english CBSE


