
The least integral value of $a$ such that $\left( a-2 \right){{x}^{2}}+8x+a+4>0,\forall x\in R$ is.
(a) $3$
(b) $5$
(c) $4$
(d) $6$
Answer
594.9k+ views
Hint: For solving this question we will use the concept that for any quadratic function $f\left( x \right)=d{{x}^{2}}+bx+c$ if the coefficient of ${{x}^{2}}$ is greater than zero and its discriminant is less than zero then, for any real value of $x$ value of $f\left( x \right)>0$ always.
Complete step-by-step solution -
Given:
We have to find the least integral value of $a$ such that $\left( a-2 \right){{x}^{2}}+8x+a+4>0,\forall x\in R$ .
Now, before we proceed we should know that a quadratic function $f\left( x \right)=d{{x}^{2}}+bx+c$ will be always greater than zero for any real value of $x$ only if $d>0$ & ${{b}^{2}}-4dc>0$ .
Now, here it is given that, $\left( a-2 \right){{x}^{2}}+8x+a+4>0$ . So, here $d=a-2$ , $b=8$ and $c=a+4$ . And from the above discussion, we know that, $d>0$ & ${{b}^{2}}-4dc<0$ .
Now, we will solve each of the conditions separately and find the suitable values of $a$ .
Now, we solve for the condition $d>0$ where, $d=a-2$ . Then,
$\begin{align}
& d>0 \\
& \Rightarrow a-2>0 \\
& \Rightarrow a>2 \\
& \Rightarrow a\in \left( 2,\infty \right).................\left( 1 \right) \\
\end{align}$
Now, we solve for the condition ${{b}^{2}}-4dc<0$ where, $d=a-2$ , $b=8$ and $c=a+4$ . Then,
$\begin{align}
& {{b}^{2}}-4dc<0 \\
& \Rightarrow {{8}^{2}}-4\left( a-2 \right)\left( a+4 \right)<0 \\
& \Rightarrow 64-4\left( {{a}^{2}}+2a-8 \right)<0 \\
& \Rightarrow 64-4{{a}^{2}}-8a+32<0 \\
& \Rightarrow -4{{a}^{2}}-8a+96<0 \\
& \Rightarrow 4{{a}^{2}}+8a-96>0 \\
& \Rightarrow {{a}^{2}}+2a-24>0 \\
& \Rightarrow {{a}^{2}}+6a-4a-24>0 \\
& \Rightarrow a\left( a+6 \right)-4\left( a+6 \right)>0 \\
& \Rightarrow \left( a+6 \right)\left( a-4 \right)>0 \\
& \Rightarrow a<-6\text{ }\!\!\And\!\! \text{ }a>4 \\
& \Rightarrow a\in \left( -\infty ,-6 \right)\bigcup \left( 4,\infty \right)...................\left( 2 \right) \\
\end{align}$
Now, form (1) and (2) we have the following results:
$\begin{align}
& a\in \left( 2,\infty \right) \\
& a\in \left( -\infty ,-6 \right)\bigcup \left( 4,\infty \right) \\
\end{align}$
Now, we will have to take the intersection of $a\in \left( 2,\infty \right)$ and $a\in \left( -\infty ,-6 \right)\bigcup \left( 4,\infty \right)$ . Then,
$\begin{align}
& a\in \left[ \left( -\infty ,-6 \right)\bigcup \left( 4,\infty \right) \right]\bigcap \left( 2,\infty \right) \\
& \Rightarrow a\in \left( 4,\infty \right) \\
\end{align}$
Now, from the above result, we conclude that the value of $a$ should be greater than 4 so, that $a\in \left( 2,\infty \right)$ and $a\in \left( -\infty ,-6 \right)\bigcup \left( 4,\infty \right)$ . And ultimately $a\in \left( 4,\infty \right)$ if $\left( a-2 \right){{x}^{2}}+8x+a+4>0,\forall x\in R$ .
Now, it is obvious that the least integral value greater than 4 is 5 so, our final answer will be 5.
Thus, $a=5$ will be the least integral value of $a$ such that $\left( a-2 \right){{x}^{2}}+8x+a+4>0,\forall x\in R$.
Hence, option (b) will be the correct option.
Note: Here, the student should first understand what is asked in the problem and then proceed in the right direction to get the correct answer quickly. Moreover, we should be careful while solving inequalities and writing the suitable values of $a$ . And while giving the final answer we should be extra careful and don’t select the option (c) as it doesn’t lie in the set $a\in \left( 4,\infty \right)$.
Complete step-by-step solution -
Given:
We have to find the least integral value of $a$ such that $\left( a-2 \right){{x}^{2}}+8x+a+4>0,\forall x\in R$ .
Now, before we proceed we should know that a quadratic function $f\left( x \right)=d{{x}^{2}}+bx+c$ will be always greater than zero for any real value of $x$ only if $d>0$ & ${{b}^{2}}-4dc>0$ .
Now, here it is given that, $\left( a-2 \right){{x}^{2}}+8x+a+4>0$ . So, here $d=a-2$ , $b=8$ and $c=a+4$ . And from the above discussion, we know that, $d>0$ & ${{b}^{2}}-4dc<0$ .
Now, we will solve each of the conditions separately and find the suitable values of $a$ .
Now, we solve for the condition $d>0$ where, $d=a-2$ . Then,
$\begin{align}
& d>0 \\
& \Rightarrow a-2>0 \\
& \Rightarrow a>2 \\
& \Rightarrow a\in \left( 2,\infty \right).................\left( 1 \right) \\
\end{align}$
Now, we solve for the condition ${{b}^{2}}-4dc<0$ where, $d=a-2$ , $b=8$ and $c=a+4$ . Then,
$\begin{align}
& {{b}^{2}}-4dc<0 \\
& \Rightarrow {{8}^{2}}-4\left( a-2 \right)\left( a+4 \right)<0 \\
& \Rightarrow 64-4\left( {{a}^{2}}+2a-8 \right)<0 \\
& \Rightarrow 64-4{{a}^{2}}-8a+32<0 \\
& \Rightarrow -4{{a}^{2}}-8a+96<0 \\
& \Rightarrow 4{{a}^{2}}+8a-96>0 \\
& \Rightarrow {{a}^{2}}+2a-24>0 \\
& \Rightarrow {{a}^{2}}+6a-4a-24>0 \\
& \Rightarrow a\left( a+6 \right)-4\left( a+6 \right)>0 \\
& \Rightarrow \left( a+6 \right)\left( a-4 \right)>0 \\
& \Rightarrow a<-6\text{ }\!\!\And\!\! \text{ }a>4 \\
& \Rightarrow a\in \left( -\infty ,-6 \right)\bigcup \left( 4,\infty \right)...................\left( 2 \right) \\
\end{align}$
Now, form (1) and (2) we have the following results:
$\begin{align}
& a\in \left( 2,\infty \right) \\
& a\in \left( -\infty ,-6 \right)\bigcup \left( 4,\infty \right) \\
\end{align}$
Now, we will have to take the intersection of $a\in \left( 2,\infty \right)$ and $a\in \left( -\infty ,-6 \right)\bigcup \left( 4,\infty \right)$ . Then,
$\begin{align}
& a\in \left[ \left( -\infty ,-6 \right)\bigcup \left( 4,\infty \right) \right]\bigcap \left( 2,\infty \right) \\
& \Rightarrow a\in \left( 4,\infty \right) \\
\end{align}$
Now, from the above result, we conclude that the value of $a$ should be greater than 4 so, that $a\in \left( 2,\infty \right)$ and $a\in \left( -\infty ,-6 \right)\bigcup \left( 4,\infty \right)$ . And ultimately $a\in \left( 4,\infty \right)$ if $\left( a-2 \right){{x}^{2}}+8x+a+4>0,\forall x\in R$ .
Now, it is obvious that the least integral value greater than 4 is 5 so, our final answer will be 5.
Thus, $a=5$ will be the least integral value of $a$ such that $\left( a-2 \right){{x}^{2}}+8x+a+4>0,\forall x\in R$.
Hence, option (b) will be the correct option.
Note: Here, the student should first understand what is asked in the problem and then proceed in the right direction to get the correct answer quickly. Moreover, we should be careful while solving inequalities and writing the suitable values of $a$ . And while giving the final answer we should be extra careful and don’t select the option (c) as it doesn’t lie in the set $a\in \left( 4,\infty \right)$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

