
The LCM of 248 and 868 is 1736, then their HCF is
A) 142
B) 124
C) 421
D) 241
Answer
497.7k+ views
Hint:
Here, we will use the formula that the product of two numbers is equal to the product of their HCF and LCM. Substituting the given values in the formula, we will get the required value of the HCF of the given two numbers.
Formula Used:
\[L.C.M. \times H.C.F. = m \times n\]
Complete step by step solution:
The given two numbers are: 248 and 868
The L.C.M. of two numbers is 1736.
Let us assume that the H.C.F. of the two numbers is \[x\].
We know that the product of two numbers is equal to the product of their LCM and HCF.
Substituting \[L.C.M = 1736\], \[m = 248\] and \[n = 868\] in the formula \[L.C.M. \times H.C.F. = m \times n\], we get
\[1736 \times x = 248 \times 868\]
Dividing both sides by 1736, we get
\[ \Rightarrow x = \dfrac{{248 \times 868}}{{1736}}\]
Simplifying the expression, we get
\[ \Rightarrow x = \dfrac{{248}}{2}\]
Dividing 248 by 2, we get
\[ \Rightarrow x = 124\]
Therefore, the H.C.F. of the given two numbers is 124.
Hence, option B is the correct answer.
Note:
Least Common Multiple or LCM is the smallest possible common multiple of any given natural numbers.
Highest Common Factor or HCF is the largest common factor of two or more given numbers. Now, we have seen the property of LCM and HCF which is:\[{\rm{L}}{\rm{.C}}{\rm{.M}}{\rm{.}} \times {\rm{H}}{\rm{.C}}{\rm{.F}}{\rm{.}} = m \times n\]
Now, this property is applicable for only two numbers.
Also, HCF of any given numbers can never be greater than those numbers and LCM of any given numbers can never be smaller than those numbers.
Here, we will use the formula that the product of two numbers is equal to the product of their HCF and LCM. Substituting the given values in the formula, we will get the required value of the HCF of the given two numbers.
Formula Used:
\[L.C.M. \times H.C.F. = m \times n\]
Complete step by step solution:
The given two numbers are: 248 and 868
The L.C.M. of two numbers is 1736.
Let us assume that the H.C.F. of the two numbers is \[x\].
We know that the product of two numbers is equal to the product of their LCM and HCF.
Substituting \[L.C.M = 1736\], \[m = 248\] and \[n = 868\] in the formula \[L.C.M. \times H.C.F. = m \times n\], we get
\[1736 \times x = 248 \times 868\]
Dividing both sides by 1736, we get
\[ \Rightarrow x = \dfrac{{248 \times 868}}{{1736}}\]
Simplifying the expression, we get
\[ \Rightarrow x = \dfrac{{248}}{2}\]
Dividing 248 by 2, we get
\[ \Rightarrow x = 124\]
Therefore, the H.C.F. of the given two numbers is 124.
Hence, option B is the correct answer.
Note:
Least Common Multiple or LCM is the smallest possible common multiple of any given natural numbers.
Highest Common Factor or HCF is the largest common factor of two or more given numbers. Now, we have seen the property of LCM and HCF which is:\[{\rm{L}}{\rm{.C}}{\rm{.M}}{\rm{.}} \times {\rm{H}}{\rm{.C}}{\rm{.F}}{\rm{.}} = m \times n\]
Now, this property is applicable for only two numbers.
Also, HCF of any given numbers can never be greater than those numbers and LCM of any given numbers can never be smaller than those numbers.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples for herbs , shrubs , climbers , creepers

How many millions make a billion class 6 maths CBSE

What is the Full Form of NCR Delhi ?

How many seconds are there in an hour class 6 maths CBSE

Why is the Earth called a unique planet class 6 social science CBSE

What is the full form of AD a After death b Anno domini class 6 social science CBSE
