
The LCM of 248 and 868 is 1736, then their HCF is
A) 142
B) 124
C) 421
D) 241
Answer
546k+ views
Hint:
Here, we will use the formula that the product of two numbers is equal to the product of their HCF and LCM. Substituting the given values in the formula, we will get the required value of the HCF of the given two numbers.
Formula Used:
\[L.C.M. \times H.C.F. = m \times n\]
Complete step by step solution:
The given two numbers are: 248 and 868
The L.C.M. of two numbers is 1736.
Let us assume that the H.C.F. of the two numbers is \[x\].
We know that the product of two numbers is equal to the product of their LCM and HCF.
Substituting \[L.C.M = 1736\], \[m = 248\] and \[n = 868\] in the formula \[L.C.M. \times H.C.F. = m \times n\], we get
\[1736 \times x = 248 \times 868\]
Dividing both sides by 1736, we get
\[ \Rightarrow x = \dfrac{{248 \times 868}}{{1736}}\]
Simplifying the expression, we get
\[ \Rightarrow x = \dfrac{{248}}{2}\]
Dividing 248 by 2, we get
\[ \Rightarrow x = 124\]
Therefore, the H.C.F. of the given two numbers is 124.
Hence, option B is the correct answer.
Note:
Least Common Multiple or LCM is the smallest possible common multiple of any given natural numbers.
Highest Common Factor or HCF is the largest common factor of two or more given numbers. Now, we have seen the property of LCM and HCF which is:\[{\rm{L}}{\rm{.C}}{\rm{.M}}{\rm{.}} \times {\rm{H}}{\rm{.C}}{\rm{.F}}{\rm{.}} = m \times n\]
Now, this property is applicable for only two numbers.
Also, HCF of any given numbers can never be greater than those numbers and LCM of any given numbers can never be smaller than those numbers.
Here, we will use the formula that the product of two numbers is equal to the product of their HCF and LCM. Substituting the given values in the formula, we will get the required value of the HCF of the given two numbers.
Formula Used:
\[L.C.M. \times H.C.F. = m \times n\]
Complete step by step solution:
The given two numbers are: 248 and 868
The L.C.M. of two numbers is 1736.
Let us assume that the H.C.F. of the two numbers is \[x\].
We know that the product of two numbers is equal to the product of their LCM and HCF.
Substituting \[L.C.M = 1736\], \[m = 248\] and \[n = 868\] in the formula \[L.C.M. \times H.C.F. = m \times n\], we get
\[1736 \times x = 248 \times 868\]
Dividing both sides by 1736, we get
\[ \Rightarrow x = \dfrac{{248 \times 868}}{{1736}}\]
Simplifying the expression, we get
\[ \Rightarrow x = \dfrac{{248}}{2}\]
Dividing 248 by 2, we get
\[ \Rightarrow x = 124\]
Therefore, the H.C.F. of the given two numbers is 124.
Hence, option B is the correct answer.
Note:
Least Common Multiple or LCM is the smallest possible common multiple of any given natural numbers.
Highest Common Factor or HCF is the largest common factor of two or more given numbers. Now, we have seen the property of LCM and HCF which is:\[{\rm{L}}{\rm{.C}}{\rm{.M}}{\rm{.}} \times {\rm{H}}{\rm{.C}}{\rm{.F}}{\rm{.}} = m \times n\]
Now, this property is applicable for only two numbers.
Also, HCF of any given numbers can never be greater than those numbers and LCM of any given numbers can never be smaller than those numbers.
Recently Updated Pages
Master Class 6 English: Engaging Questions & Answers for Success

Master Class 6 Social Science: Engaging Questions & Answers for Success

Master Class 6 Maths: Engaging Questions & Answers for Success

Master Class 6 Science: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Why are manures considered better than fertilizers class 11 biology CBSE

Trending doubts
How many seconds are there in an hour class 6 maths CBSE

How many millions make a billion class 6 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the capital city of Australia? A) Sydney B) Melbourne C) Brisbane D) Canberra

Four bells toll together at 900am They toll after 7811 class 6 maths CBSE

What is BLO What is the full form of BLO class 8 social science CBSE


