
The inverse of the function $ f\left( x \right) = \dfrac{{{9^x} - {9^{ - x}}}}{{{9^x} + {9^{ - x}}}} $ is:
A. $ {f^{ - 1}}\left( x \right) = {\log _9}\left( {\dfrac{{1 + x}}{{1 - x}}} \right) $
B. $ {f^{ - 1}}\left( x \right) = \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + x}}{{1 - x}}} \right) $
C. $ {f^{ - 1}}\left( x \right) = \dfrac{1}{4}{\log _9}\left( {\dfrac{{1 + x}}{{1 - x}}} \right) $
D. $ {f^{ - 1}}\left( x \right) = \dfrac{1}{2}{\log _9}\left( {\dfrac{{2x}}{{2x - 1}}} \right) $
Answer
572.7k+ views
Hint: Inverse function is a function that reverses another function. If the value of $ f\left( x \right) $ is y, then applying the inverse function to y gives the value of x. So here consider the given function as y first and then solve for x. The value of x is considered as $ {f^{ - 1}}\left( y \right) $ . Then replace y with x in $ {f^{ - 1}}\left( y \right) $ , which gives our required inverse function $ {f^{ - 1}}\left( x \right) $
Complete step by step solution:
We are given a function $ f\left( x \right) = \dfrac{{{9^x} - {9^{ - x}}}}{{{9^x} + {9^{ - x}}}} $ and we have to find its inverse.
Let $ f\left( x \right) $ is equal to y.
$ f\left( x \right) = y $ , this means $ y = \dfrac{{{9^x} - {9^{ - x}}}}{{{9^x} + {9^{ - x}}}} $
Now we are solving for the value of x
$ \Rightarrow y = \dfrac{{\left( {{9^x} - \dfrac{1}{{{9^x}}}} \right)}}{{\left( {{9^x} + \dfrac{1}{{{9^x}}}} \right)}} $ (Since we know that $ {a^{ - m}} $ can also be written as $ \dfrac{1}{{{a^m}}} $ )
$ \Rightarrow y = \dfrac{{\left( {\dfrac{{\left( {{9^x} \times {9^x}} \right) - 1}}{{{9^x}}}} \right)}}{{\left( {\dfrac{{\left( {{9^x} \times {9^x}} \right) + 1}}{{{9^x}}}} \right)}} $
$ \Rightarrow y = \dfrac{{\left( {\dfrac{{{9^{2x}} - 1}}{{{9^x}}}} \right)}}{{\left( {\dfrac{{{9^{2x}} + 1}}{{{9^x}}}} \right)}} $ (since we know that $ {a^m} \times {a^n} $ can also be written as $ {a^{m + n}} $ )
$ \Rightarrow y = \dfrac{{{9^{2x}} - 1}}{{{9^{2x}} + 1}} $
On cross multiplication, we get
$ \Rightarrow y\left( {{9^{2x}} + 1} \right) = {9^{2x}} - 1 $
$ \Rightarrow {9^{2x}}y + y = {9^{2x}} - 1 $
Putting exponential terms one side and remaining terms other side, we get
$ \Rightarrow y + 1 = {9^{2x}} - {9^{2x}}y $
Taking out $ {9^{2x}} $ common from the left hand side
$ \Rightarrow 1 + y = {9^{2x}}\left( {1 - y} \right) $
We need the value of x, so put the terms containing x at the left hand side and remaining right hand side.
$ \Rightarrow {9^{2x}} = \dfrac{{1 + y}}{{1 - y}} $
Sending 9 present at LHS to the RHS results in a logarithm with base 9.
$ \Rightarrow 2x = {\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right) $
$ \therefore x = \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right) $
Therefore, the value of x is $ \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right) $ , this means $ {f^{ - 1}}\left( y \right) = \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right) $
Now replace y with x in $ {f^{ - 1}}\left( y \right) $ to get the inverse function $ {f^{ - 1}}\left( x \right) $
Therefore, $ {f^{ - 1}}\left( x \right) = \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + x}}{{1 - x}}} \right) $
So, the correct answer is “Option B”.
Note: We can also verify the resulting inverse function. Equate the inverse function $ {f^{ - 1}}\left( x \right) $ with y and find the new value of x. The result (the value of x in terms of y) should resemble the function $ f\left( y \right) $ or else the result is wrong. Inverse function is not a reciprocal of the original function. It is just another function that undoes whatever done by the original function (like add after subtracting). So please be careful.
Complete step by step solution:
We are given a function $ f\left( x \right) = \dfrac{{{9^x} - {9^{ - x}}}}{{{9^x} + {9^{ - x}}}} $ and we have to find its inverse.
Let $ f\left( x \right) $ is equal to y.
$ f\left( x \right) = y $ , this means $ y = \dfrac{{{9^x} - {9^{ - x}}}}{{{9^x} + {9^{ - x}}}} $
Now we are solving for the value of x
$ \Rightarrow y = \dfrac{{\left( {{9^x} - \dfrac{1}{{{9^x}}}} \right)}}{{\left( {{9^x} + \dfrac{1}{{{9^x}}}} \right)}} $ (Since we know that $ {a^{ - m}} $ can also be written as $ \dfrac{1}{{{a^m}}} $ )
$ \Rightarrow y = \dfrac{{\left( {\dfrac{{\left( {{9^x} \times {9^x}} \right) - 1}}{{{9^x}}}} \right)}}{{\left( {\dfrac{{\left( {{9^x} \times {9^x}} \right) + 1}}{{{9^x}}}} \right)}} $
$ \Rightarrow y = \dfrac{{\left( {\dfrac{{{9^{2x}} - 1}}{{{9^x}}}} \right)}}{{\left( {\dfrac{{{9^{2x}} + 1}}{{{9^x}}}} \right)}} $ (since we know that $ {a^m} \times {a^n} $ can also be written as $ {a^{m + n}} $ )
$ \Rightarrow y = \dfrac{{{9^{2x}} - 1}}{{{9^{2x}} + 1}} $
On cross multiplication, we get
$ \Rightarrow y\left( {{9^{2x}} + 1} \right) = {9^{2x}} - 1 $
$ \Rightarrow {9^{2x}}y + y = {9^{2x}} - 1 $
Putting exponential terms one side and remaining terms other side, we get
$ \Rightarrow y + 1 = {9^{2x}} - {9^{2x}}y $
Taking out $ {9^{2x}} $ common from the left hand side
$ \Rightarrow 1 + y = {9^{2x}}\left( {1 - y} \right) $
We need the value of x, so put the terms containing x at the left hand side and remaining right hand side.
$ \Rightarrow {9^{2x}} = \dfrac{{1 + y}}{{1 - y}} $
Sending 9 present at LHS to the RHS results in a logarithm with base 9.
$ \Rightarrow 2x = {\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right) $
$ \therefore x = \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right) $
Therefore, the value of x is $ \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right) $ , this means $ {f^{ - 1}}\left( y \right) = \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right) $
Now replace y with x in $ {f^{ - 1}}\left( y \right) $ to get the inverse function $ {f^{ - 1}}\left( x \right) $
Therefore, $ {f^{ - 1}}\left( x \right) = \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + x}}{{1 - x}}} \right) $
So, the correct answer is “Option B”.
Note: We can also verify the resulting inverse function. Equate the inverse function $ {f^{ - 1}}\left( x \right) $ with y and find the new value of x. The result (the value of x in terms of y) should resemble the function $ f\left( y \right) $ or else the result is wrong. Inverse function is not a reciprocal of the original function. It is just another function that undoes whatever done by the original function (like add after subtracting). So please be careful.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

