
The inverse of the function $ f\left( x \right) = \dfrac{{{9^x} - {9^{ - x}}}}{{{9^x} + {9^{ - x}}}} $ is:
A. $ {f^{ - 1}}\left( x \right) = {\log _9}\left( {\dfrac{{1 + x}}{{1 - x}}} \right) $
B. $ {f^{ - 1}}\left( x \right) = \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + x}}{{1 - x}}} \right) $
C. $ {f^{ - 1}}\left( x \right) = \dfrac{1}{4}{\log _9}\left( {\dfrac{{1 + x}}{{1 - x}}} \right) $
D. $ {f^{ - 1}}\left( x \right) = \dfrac{1}{2}{\log _9}\left( {\dfrac{{2x}}{{2x - 1}}} \right) $
Answer
486.6k+ views
Hint: Inverse function is a function that reverses another function. If the value of $ f\left( x \right) $ is y, then applying the inverse function to y gives the value of x. So here consider the given function as y first and then solve for x. The value of x is considered as $ {f^{ - 1}}\left( y \right) $ . Then replace y with x in $ {f^{ - 1}}\left( y \right) $ , which gives our required inverse function $ {f^{ - 1}}\left( x \right) $
Complete step by step solution:
We are given a function $ f\left( x \right) = \dfrac{{{9^x} - {9^{ - x}}}}{{{9^x} + {9^{ - x}}}} $ and we have to find its inverse.
Let $ f\left( x \right) $ is equal to y.
$ f\left( x \right) = y $ , this means $ y = \dfrac{{{9^x} - {9^{ - x}}}}{{{9^x} + {9^{ - x}}}} $
Now we are solving for the value of x
$ \Rightarrow y = \dfrac{{\left( {{9^x} - \dfrac{1}{{{9^x}}}} \right)}}{{\left( {{9^x} + \dfrac{1}{{{9^x}}}} \right)}} $ (Since we know that $ {a^{ - m}} $ can also be written as $ \dfrac{1}{{{a^m}}} $ )
$ \Rightarrow y = \dfrac{{\left( {\dfrac{{\left( {{9^x} \times {9^x}} \right) - 1}}{{{9^x}}}} \right)}}{{\left( {\dfrac{{\left( {{9^x} \times {9^x}} \right) + 1}}{{{9^x}}}} \right)}} $
$ \Rightarrow y = \dfrac{{\left( {\dfrac{{{9^{2x}} - 1}}{{{9^x}}}} \right)}}{{\left( {\dfrac{{{9^{2x}} + 1}}{{{9^x}}}} \right)}} $ (since we know that $ {a^m} \times {a^n} $ can also be written as $ {a^{m + n}} $ )
$ \Rightarrow y = \dfrac{{{9^{2x}} - 1}}{{{9^{2x}} + 1}} $
On cross multiplication, we get
$ \Rightarrow y\left( {{9^{2x}} + 1} \right) = {9^{2x}} - 1 $
$ \Rightarrow {9^{2x}}y + y = {9^{2x}} - 1 $
Putting exponential terms one side and remaining terms other side, we get
$ \Rightarrow y + 1 = {9^{2x}} - {9^{2x}}y $
Taking out $ {9^{2x}} $ common from the left hand side
$ \Rightarrow 1 + y = {9^{2x}}\left( {1 - y} \right) $
We need the value of x, so put the terms containing x at the left hand side and remaining right hand side.
$ \Rightarrow {9^{2x}} = \dfrac{{1 + y}}{{1 - y}} $
Sending 9 present at LHS to the RHS results in a logarithm with base 9.
$ \Rightarrow 2x = {\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right) $
$ \therefore x = \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right) $
Therefore, the value of x is $ \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right) $ , this means $ {f^{ - 1}}\left( y \right) = \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right) $
Now replace y with x in $ {f^{ - 1}}\left( y \right) $ to get the inverse function $ {f^{ - 1}}\left( x \right) $
Therefore, $ {f^{ - 1}}\left( x \right) = \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + x}}{{1 - x}}} \right) $
So, the correct answer is “Option B”.
Note: We can also verify the resulting inverse function. Equate the inverse function $ {f^{ - 1}}\left( x \right) $ with y and find the new value of x. The result (the value of x in terms of y) should resemble the function $ f\left( y \right) $ or else the result is wrong. Inverse function is not a reciprocal of the original function. It is just another function that undoes whatever done by the original function (like add after subtracting). So please be careful.
Complete step by step solution:
We are given a function $ f\left( x \right) = \dfrac{{{9^x} - {9^{ - x}}}}{{{9^x} + {9^{ - x}}}} $ and we have to find its inverse.
Let $ f\left( x \right) $ is equal to y.
$ f\left( x \right) = y $ , this means $ y = \dfrac{{{9^x} - {9^{ - x}}}}{{{9^x} + {9^{ - x}}}} $
Now we are solving for the value of x
$ \Rightarrow y = \dfrac{{\left( {{9^x} - \dfrac{1}{{{9^x}}}} \right)}}{{\left( {{9^x} + \dfrac{1}{{{9^x}}}} \right)}} $ (Since we know that $ {a^{ - m}} $ can also be written as $ \dfrac{1}{{{a^m}}} $ )
$ \Rightarrow y = \dfrac{{\left( {\dfrac{{\left( {{9^x} \times {9^x}} \right) - 1}}{{{9^x}}}} \right)}}{{\left( {\dfrac{{\left( {{9^x} \times {9^x}} \right) + 1}}{{{9^x}}}} \right)}} $
$ \Rightarrow y = \dfrac{{\left( {\dfrac{{{9^{2x}} - 1}}{{{9^x}}}} \right)}}{{\left( {\dfrac{{{9^{2x}} + 1}}{{{9^x}}}} \right)}} $ (since we know that $ {a^m} \times {a^n} $ can also be written as $ {a^{m + n}} $ )
$ \Rightarrow y = \dfrac{{{9^{2x}} - 1}}{{{9^{2x}} + 1}} $
On cross multiplication, we get
$ \Rightarrow y\left( {{9^{2x}} + 1} \right) = {9^{2x}} - 1 $
$ \Rightarrow {9^{2x}}y + y = {9^{2x}} - 1 $
Putting exponential terms one side and remaining terms other side, we get
$ \Rightarrow y + 1 = {9^{2x}} - {9^{2x}}y $
Taking out $ {9^{2x}} $ common from the left hand side
$ \Rightarrow 1 + y = {9^{2x}}\left( {1 - y} \right) $
We need the value of x, so put the terms containing x at the left hand side and remaining right hand side.
$ \Rightarrow {9^{2x}} = \dfrac{{1 + y}}{{1 - y}} $
Sending 9 present at LHS to the RHS results in a logarithm with base 9.
$ \Rightarrow 2x = {\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right) $
$ \therefore x = \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right) $
Therefore, the value of x is $ \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right) $ , this means $ {f^{ - 1}}\left( y \right) = \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right) $
Now replace y with x in $ {f^{ - 1}}\left( y \right) $ to get the inverse function $ {f^{ - 1}}\left( x \right) $
Therefore, $ {f^{ - 1}}\left( x \right) = \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + x}}{{1 - x}}} \right) $
So, the correct answer is “Option B”.
Note: We can also verify the resulting inverse function. Equate the inverse function $ {f^{ - 1}}\left( x \right) $ with y and find the new value of x. The result (the value of x in terms of y) should resemble the function $ f\left( y \right) $ or else the result is wrong. Inverse function is not a reciprocal of the original function. It is just another function that undoes whatever done by the original function (like add after subtracting). So please be careful.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
