
The inverse of the function $f\left( x \right)=\dfrac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}}+2$ is given by
\[\begin{align}
& A.\log {{\left( \dfrac{\left( x-2 \right)}{\left( x-1 \right)} \right)}^{\dfrac{1}{2}}} \\
& B.\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{\left( x-1 \right)}{\left( 3-x \right)} \right) \\
& C.\log {{\left( \dfrac{x}{2-x} \right)}^{\dfrac{1}{2}}} \\
& D.\log {{\left( \dfrac{\left( x-1 \right)}{\left( 3-x \right)} \right)}^{\dfrac{1}{2}}} \\
\end{align}\]
Answer
586.8k+ views
Hint:
To solve this question, we will first substitute $f\left( x \right)=y$ after simplifying f(x) as $f\left( x \right)=y\Rightarrow {{f}^{-1}}\left( y \right)=x$. So, we will then try to compute value of x from $y=f\left( x \right)$. After computing value of x we will use ${{f}^{-1}}\left( y \right)=x$ to get answer in terms of y and finally we will replace y by x to get answer in term of x.
Complete step by step answer:
We are given f(x) as \[f\left( x \right)=\dfrac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}}+2\]
First of all we will simplify f(x).
If a function $g:A\to B$ has $g\left( a \right)=b$ then inverse of g is given by ${{g}^{-1}}$ where ${{g}^{-1}}\left( b \right)=a$
Here, \[f\left( x \right)=\dfrac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}}+2\]
Let us use ${{e}^{-x}}=\dfrac{1}{{{e}^{x}}}$ in above, we get:
\[\begin{align}
& \Rightarrow f\left( x \right)=\dfrac{{{e}^{x}}-\dfrac{1}{{{e}^{x}}}}{{{e}^{x}}+\dfrac{1}{{{e}^{x}}}}+2 \\
& \Rightarrow f\left( x \right)=\dfrac{\dfrac{{{e}^{2x}}-1}{{{e}^{x}}}}{\dfrac{{{e}^{2x}}+1}{{{e}^{x}}}}+2 \\
\end{align}\]
Cancelling ${{e}^{x}}$ we have:
\[\Rightarrow f\left( x \right)=\dfrac{{{e}^{2x}}-1}{{{e}^{2x}}+1}+2\]
To find inverse of f we substitute $f\left( x \right)=y$
Put \[f\left( x \right)=y\Rightarrow x={{f}^{-1}}\left( y \right)\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Put $f\left( x \right)=y$
\[\begin{align}
& \Rightarrow y=\dfrac{{{e}^{2x}}-1}{{{e}^{2x}}+1}+2 \\
& \Rightarrow y-2=\dfrac{{{e}^{2x}}-1}{{{e}^{2x}}+1} \\
\end{align}\]
Cross multiplying the above equation, we get:
\[\begin{align}
& \Rightarrow \left( y-2 \right)\left( {{e}^{2x}}+1 \right)=\left( {{e}^{2x}}-1 \right) \\
& \Rightarrow {{e}^{2x}}y-2{{e}^{2x}}+y-2={{e}^{2x}}-1 \\
& \Rightarrow {{e}^{2x}}\left( y-2 \right)-{{e}^{2x}}=-1+2-y \\
& \Rightarrow {{e}^{2x}}\left( y-2-1 \right)=-y+1 \\
& \Rightarrow {{e}^{2x}}\left( y-3 \right)=1-y \\
\end{align}\]
Dividing by (y-3) we get:
\[\Rightarrow {{e}^{2x}}=\dfrac{1-y}{y-3}\]
Now as \[\begin{align}
& \ln {{e}^{x}}=x \\
& \Rightarrow \ln {{e}^{2x}}=2x \\
\end{align}\]
Taking $\ln \Rightarrow {{\log }_{e}}$ on both sides we get:
\[\begin{align}
& \Rightarrow \ln \left( {{e}^{2x}} \right)=\ln \left( \dfrac{1-y}{y-3} \right)={{\log }_{e}}\left( \dfrac{1-y}{y-3} \right) \\
& \Rightarrow 2x={{\log }_{e}}\left( \dfrac{1-y}{y-3} \right) \\
& \Rightarrow x=\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1-y}{y-3} \right) \\
\end{align}\]
Now because $m\log n=\log {{n}^{m}}$ using this in above we get:
\[\Rightarrow x={{\log }_{e}}{{\left( \dfrac{1-y}{y-3} \right)}^{\dfrac{1}{2}}}\]
Now from equation (i) we had ${{f}^{-1}}\left( y \right)=x$
\[\Rightarrow {{f}^{-1}}\left( y \right)={{\log }_{e}}{{\left( \dfrac{1-y}{y-3} \right)}^{\dfrac{1}{2}}}\]
Now replacing y from x in above and using $\log {{n}^{m}}=m\log n$ we have:
\[\Rightarrow {{f}^{-1}}\left( x \right)=\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1-x}{x-3} \right)=\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{x-1}{3-x} \right)\]
The value of inverse of f is \[\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1-x}{x-3} \right)=\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{x-1}{3-x} \right)\]
So option B is correct.
Note:
Students should not get confused between step of using $m\log n=\log {{n}^{m}}$
The answer to this question can also be \[{{f}^{-1}}\left( x \right)={{\log }_{e}}{{\left( \dfrac{1-x}{x-3} \right)}^{\dfrac{1}{2}}}\] but it was not in any option given, so we have again used $m\log n=\log {{n}^{m}}$ to get option matched. Anyways \[{{f}^{-1}}\left( x \right)=\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1-x}{x-3} \right)\text{ and }{{f}^{-1}}\left( x \right)={{\log }_{e}}{{\left( \dfrac{1-x}{x-3} \right)}^{\dfrac{1}{2}}}\] both are correct.
To solve this question, we will first substitute $f\left( x \right)=y$ after simplifying f(x) as $f\left( x \right)=y\Rightarrow {{f}^{-1}}\left( y \right)=x$. So, we will then try to compute value of x from $y=f\left( x \right)$. After computing value of x we will use ${{f}^{-1}}\left( y \right)=x$ to get answer in terms of y and finally we will replace y by x to get answer in term of x.
Complete step by step answer:
We are given f(x) as \[f\left( x \right)=\dfrac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}}+2\]
First of all we will simplify f(x).
If a function $g:A\to B$ has $g\left( a \right)=b$ then inverse of g is given by ${{g}^{-1}}$ where ${{g}^{-1}}\left( b \right)=a$
Here, \[f\left( x \right)=\dfrac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}}+2\]
Let us use ${{e}^{-x}}=\dfrac{1}{{{e}^{x}}}$ in above, we get:
\[\begin{align}
& \Rightarrow f\left( x \right)=\dfrac{{{e}^{x}}-\dfrac{1}{{{e}^{x}}}}{{{e}^{x}}+\dfrac{1}{{{e}^{x}}}}+2 \\
& \Rightarrow f\left( x \right)=\dfrac{\dfrac{{{e}^{2x}}-1}{{{e}^{x}}}}{\dfrac{{{e}^{2x}}+1}{{{e}^{x}}}}+2 \\
\end{align}\]
Cancelling ${{e}^{x}}$ we have:
\[\Rightarrow f\left( x \right)=\dfrac{{{e}^{2x}}-1}{{{e}^{2x}}+1}+2\]
To find inverse of f we substitute $f\left( x \right)=y$
Put \[f\left( x \right)=y\Rightarrow x={{f}^{-1}}\left( y \right)\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Put $f\left( x \right)=y$
\[\begin{align}
& \Rightarrow y=\dfrac{{{e}^{2x}}-1}{{{e}^{2x}}+1}+2 \\
& \Rightarrow y-2=\dfrac{{{e}^{2x}}-1}{{{e}^{2x}}+1} \\
\end{align}\]
Cross multiplying the above equation, we get:
\[\begin{align}
& \Rightarrow \left( y-2 \right)\left( {{e}^{2x}}+1 \right)=\left( {{e}^{2x}}-1 \right) \\
& \Rightarrow {{e}^{2x}}y-2{{e}^{2x}}+y-2={{e}^{2x}}-1 \\
& \Rightarrow {{e}^{2x}}\left( y-2 \right)-{{e}^{2x}}=-1+2-y \\
& \Rightarrow {{e}^{2x}}\left( y-2-1 \right)=-y+1 \\
& \Rightarrow {{e}^{2x}}\left( y-3 \right)=1-y \\
\end{align}\]
Dividing by (y-3) we get:
\[\Rightarrow {{e}^{2x}}=\dfrac{1-y}{y-3}\]
Now as \[\begin{align}
& \ln {{e}^{x}}=x \\
& \Rightarrow \ln {{e}^{2x}}=2x \\
\end{align}\]
Taking $\ln \Rightarrow {{\log }_{e}}$ on both sides we get:
\[\begin{align}
& \Rightarrow \ln \left( {{e}^{2x}} \right)=\ln \left( \dfrac{1-y}{y-3} \right)={{\log }_{e}}\left( \dfrac{1-y}{y-3} \right) \\
& \Rightarrow 2x={{\log }_{e}}\left( \dfrac{1-y}{y-3} \right) \\
& \Rightarrow x=\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1-y}{y-3} \right) \\
\end{align}\]
Now because $m\log n=\log {{n}^{m}}$ using this in above we get:
\[\Rightarrow x={{\log }_{e}}{{\left( \dfrac{1-y}{y-3} \right)}^{\dfrac{1}{2}}}\]
Now from equation (i) we had ${{f}^{-1}}\left( y \right)=x$
\[\Rightarrow {{f}^{-1}}\left( y \right)={{\log }_{e}}{{\left( \dfrac{1-y}{y-3} \right)}^{\dfrac{1}{2}}}\]
Now replacing y from x in above and using $\log {{n}^{m}}=m\log n$ we have:
\[\Rightarrow {{f}^{-1}}\left( x \right)=\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1-x}{x-3} \right)=\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{x-1}{3-x} \right)\]
The value of inverse of f is \[\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1-x}{x-3} \right)=\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{x-1}{3-x} \right)\]
So option B is correct.
Note:
Students should not get confused between step of using $m\log n=\log {{n}^{m}}$
The answer to this question can also be \[{{f}^{-1}}\left( x \right)={{\log }_{e}}{{\left( \dfrac{1-x}{x-3} \right)}^{\dfrac{1}{2}}}\] but it was not in any option given, so we have again used $m\log n=\log {{n}^{m}}$ to get option matched. Anyways \[{{f}^{-1}}\left( x \right)=\dfrac{1}{2}{{\log }_{e}}\left( \dfrac{1-x}{x-3} \right)\text{ and }{{f}^{-1}}\left( x \right)={{\log }_{e}}{{\left( \dfrac{1-x}{x-3} \right)}^{\dfrac{1}{2}}}\] both are correct.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

