
The half life period of a first order reaction is 10 minutes. The time required for the concentration of the reactant to change from 0.08 M to 0.02 M is:
a.) 10 min
b.) 20 min
c.) 30 min
d.) 40 min
Answer
580.8k+ views
Hint: The first order reaction is the one in which the rate depends only on the one reactant concentration.
We have for the first order reaction
$\ln \frac{{\left[ {{A_0}} \right]}}{{\left[ {{A_t}} \right]}} = kt$
Where $\left[ {{A_0}} \right]$ is the initial concentration
$\left[ {{A_t}} \right]$ is the final concentration
k is the rate constant and
t is the time taken for the reaction
Thus, by putting the values of certain variables, we can find the time taken for the reaction.
Complete step by step answer:
We know that for first order reaction, the half life time period can be given by –
${t_{\frac{1}{2}}} = \frac{{0.693}}{k}$
Where k is the rate constant.
In the question, a half life period is given to us which is 10 min.
So, by filling the value of half life time, we can get value of rate constant (k) as-
$k = \frac{{0.693}}{{{t_{\frac{1}{2}}}}}$
k = $\frac{{0.693}}{{10}}$
k = 0.0693 ${\min ^{ - 1}}$
Further, for the first order reaction, we have the formula as-
$\ln \frac{{\left[ {{A_0}} \right]}}{{\left[ {{A_t}} \right]}} = kt$
Where $\left[ {{A_0}} \right]$ is the initial concentration
$\left[ {{A_t}} \right]$ is the final concentration
k is the rate constant and
t is the time taken fo$t = \frac{{\ln 4}}{{0.0693}}\min $r the reaction
As we have to find the time for the reaction. Thus, the equation can be modified as-
$\frac{{\ln \frac{{\left[ {{A_0}} \right]}}{{\left[ {{A_t}} \right]}}}}{k} = t$
So, from the question we have initial value of concentration = 0.08 M
The final value of the concentration = 0.02 M
And rate constant = 0.0693 ${\min ^{ - 1}}$
Thus, by putting the values; we have
$t = \frac{{\ln \frac{{\left[ {0.08M} \right]}}{{\left[ {0.02M} \right]}}}}{{0.0693}}\min $
$t = \frac{{1.38}}{{0.0693}}\min $
t = 19.91 min
So, the value is approximately 20 minutes.
Thus, option b.) is our correct answer.
Note: The half life time of a first order reaction is independent of the reactant concentration. Thus, for one type of reaction if we have reactant concentration different in two sets of reactions, still both will show the same half life time. The half life time of one type of first order reaction will however be different for another type.
We have for the first order reaction
$\ln \frac{{\left[ {{A_0}} \right]}}{{\left[ {{A_t}} \right]}} = kt$
Where $\left[ {{A_0}} \right]$ is the initial concentration
$\left[ {{A_t}} \right]$ is the final concentration
k is the rate constant and
t is the time taken for the reaction
Thus, by putting the values of certain variables, we can find the time taken for the reaction.
Complete step by step answer:
We know that for first order reaction, the half life time period can be given by –
${t_{\frac{1}{2}}} = \frac{{0.693}}{k}$
Where k is the rate constant.
In the question, a half life period is given to us which is 10 min.
So, by filling the value of half life time, we can get value of rate constant (k) as-
$k = \frac{{0.693}}{{{t_{\frac{1}{2}}}}}$
k = $\frac{{0.693}}{{10}}$
k = 0.0693 ${\min ^{ - 1}}$
Further, for the first order reaction, we have the formula as-
$\ln \frac{{\left[ {{A_0}} \right]}}{{\left[ {{A_t}} \right]}} = kt$
Where $\left[ {{A_0}} \right]$ is the initial concentration
$\left[ {{A_t}} \right]$ is the final concentration
k is the rate constant and
t is the time taken fo$t = \frac{{\ln 4}}{{0.0693}}\min $r the reaction
As we have to find the time for the reaction. Thus, the equation can be modified as-
$\frac{{\ln \frac{{\left[ {{A_0}} \right]}}{{\left[ {{A_t}} \right]}}}}{k} = t$
So, from the question we have initial value of concentration = 0.08 M
The final value of the concentration = 0.02 M
And rate constant = 0.0693 ${\min ^{ - 1}}$
Thus, by putting the values; we have
$t = \frac{{\ln \frac{{\left[ {0.08M} \right]}}{{\left[ {0.02M} \right]}}}}{{0.0693}}\min $
$t = \frac{{1.38}}{{0.0693}}\min $
t = 19.91 min
So, the value is approximately 20 minutes.
Thus, option b.) is our correct answer.
Note: The half life time of a first order reaction is independent of the reactant concentration. Thus, for one type of reaction if we have reactant concentration different in two sets of reactions, still both will show the same half life time. The half life time of one type of first order reaction will however be different for another type.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

