
The given equation is $ {{\tan }^{-1}}(x+1)+{{\tan }^{-1}}(x-1)={{\tan }^{-1}}\left( \dfrac{8}{31} \right) $ find the value of x.
Answer
576k+ views
Hint: Now we know that $ {{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right) $ . Hence we will simplify the left hand side with this formula. Then we will use the formula that $ {{\tan }^{-1}}A={{\tan }^{-1}}B\Rightarrow A=B $
Hence we will find an equation in x. After simplifying the equation we will get a quadratic in x. We will solve the quadratic to find the values of x.
Complete step-by-step answer:
Now consider the given equation $ {{\tan }^{-1}}(x+1)+{{\tan }^{-1}}(x-1)={{\tan }^{-1}}\left( \dfrac{8}{31} \right) $
Now we know that $ {{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right) $ hence using this we get
$ {{\tan }^{-1}}\left( \dfrac{x+1+x-1}{1-(x+1)(x-1)} \right)={{\tan }^{-1}}\left( \dfrac{8}{31} \right) $
Now we know that if $ {{\tan }^{-1}}A={{\tan }^{-1}}B\Rightarrow A=B $
Hence we will get the equation
$ \begin{align}
& \left( \dfrac{x+1+x-1}{1-(x+1)(x-1)} \right)=\left( \dfrac{8}{31} \right) \\
& \Rightarrow \dfrac{2x}{1-(x+1)(x-1)}=\dfrac{8}{31} \\
\end{align} $
Now we know that $ (a-b)(a+b)={{a}^{2}}-{{b}^{2}} $ using this formula we get.
$ \left( \dfrac{2x}{1-({{x}^{2}}-1)} \right)=\left( \dfrac{8}{31} \right) $
Cross multiplying the above equation we get
\[31(2x)=8[1-({{x}^{2}}-1)]\]
Now let us open the brackets
$ \begin{align}
& 62x=8[1-{{x}^{2}}+1] \\
& \Rightarrow 62x=8[2-{{x}^{2}}] \\
& \Rightarrow 62x=16-8{{x}^{2}} \\
\end{align} $
Now taking all the terms of RHS to LHS we get
$ 8{{x}^{2}}+62x-16=0 $
Dividing the equation throughout by 2 we get
$ 4{{x}^{2}}+31x-8=0 $
Now we can write 31x as 32x – x . Hence we get
$ \begin{align}
& 4{{x}^{2}}+32x-x-8=0 \\
& \Rightarrow 4x(x+8)-1(x+8)=0 \\
& \Rightarrow (4x-1)(x+8)=0 \\
\end{align} $
Now we know that $ a.b=0\Rightarrow a=0\text{ or }b=0 $
Hence we get $ 4x-1=0 $ or $ x+8=0 $
Now if we consider 4x – 1 = 0
We get 4x = 1 which means $ x=\dfrac{1}{4} $
Similarly if we consider x + 8 = 0
Then we get x = - 8
Now if we take x = - 8
$ {{\tan }^{-1}}(-8+1)+{{\tan }^{-1}}(-8-1)={{\tan }^{-1}}(-7)+{{\tan }^{-1}}(-9) $
Hence by applying the formula $ {{\tan }^{-1}}A+{{\tan }^{-1}}B $ is given by $ {{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right) $ we get
$ {{\tan }^{-1}}\left( \dfrac{-7-9}{1-(-7)(-9)} \right)={{\tan }^{-1}}\left( \dfrac{-16}{1-63} \right)={{\tan }^{-1}}\left( \dfrac{-16}{-62} \right)={{\tan }^{-1}}\left( \dfrac{8}{31} \right) $
Hence x = -8 does not satisfy the equation.
Now if we take $ x=\dfrac{1}{4} $
$ {{\tan }^{-1}}(\dfrac{1}{4}+1)+{{\tan }^{-1}}(\dfrac{1}{4}-1)={{\tan }^{-1}}\left( \dfrac{5}{4} \right)+{{\tan }^{-1}}\left( -\dfrac{3}{4} \right) $
Hence by applying the formula $ {{\tan }^{-1}}A+{{\tan }^{-1}}B $ is given by $ {{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right) $ we get
\[{{\tan }^{-1}}\left( \dfrac{\dfrac{5}{4}+\left( \dfrac{-3}{4} \right)}{1-\left( \dfrac{5}{4} \right)\left( \dfrac{-3}{4} \right)} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{4}}{1+\dfrac{15}{16}} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{16}{2}}{16+15} \right)={{\tan }^{-1}}\left( \dfrac{8}{31} \right)\]
Hence the values of x = $ \dfrac{1}{4} $ and x = -8 both satisfy the equation.
Note: The formula for $ {{\tan }^{-1}}A+{{\tan }^{-1}}B $ is given by $ {{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right) $ and the formula of $ {{\tan }^{-1}}A-{{\tan }^{-1}}B $ is given by $ {{\tan }^{-1}}\left( \dfrac{A-B}{1+AB} \right) $ note that you take signs properly.
Hence we will find an equation in x. After simplifying the equation we will get a quadratic in x. We will solve the quadratic to find the values of x.
Complete step-by-step answer:
Now consider the given equation $ {{\tan }^{-1}}(x+1)+{{\tan }^{-1}}(x-1)={{\tan }^{-1}}\left( \dfrac{8}{31} \right) $
Now we know that $ {{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right) $ hence using this we get
$ {{\tan }^{-1}}\left( \dfrac{x+1+x-1}{1-(x+1)(x-1)} \right)={{\tan }^{-1}}\left( \dfrac{8}{31} \right) $
Now we know that if $ {{\tan }^{-1}}A={{\tan }^{-1}}B\Rightarrow A=B $
Hence we will get the equation
$ \begin{align}
& \left( \dfrac{x+1+x-1}{1-(x+1)(x-1)} \right)=\left( \dfrac{8}{31} \right) \\
& \Rightarrow \dfrac{2x}{1-(x+1)(x-1)}=\dfrac{8}{31} \\
\end{align} $
Now we know that $ (a-b)(a+b)={{a}^{2}}-{{b}^{2}} $ using this formula we get.
$ \left( \dfrac{2x}{1-({{x}^{2}}-1)} \right)=\left( \dfrac{8}{31} \right) $
Cross multiplying the above equation we get
\[31(2x)=8[1-({{x}^{2}}-1)]\]
Now let us open the brackets
$ \begin{align}
& 62x=8[1-{{x}^{2}}+1] \\
& \Rightarrow 62x=8[2-{{x}^{2}}] \\
& \Rightarrow 62x=16-8{{x}^{2}} \\
\end{align} $
Now taking all the terms of RHS to LHS we get
$ 8{{x}^{2}}+62x-16=0 $
Dividing the equation throughout by 2 we get
$ 4{{x}^{2}}+31x-8=0 $
Now we can write 31x as 32x – x . Hence we get
$ \begin{align}
& 4{{x}^{2}}+32x-x-8=0 \\
& \Rightarrow 4x(x+8)-1(x+8)=0 \\
& \Rightarrow (4x-1)(x+8)=0 \\
\end{align} $
Now we know that $ a.b=0\Rightarrow a=0\text{ or }b=0 $
Hence we get $ 4x-1=0 $ or $ x+8=0 $
Now if we consider 4x – 1 = 0
We get 4x = 1 which means $ x=\dfrac{1}{4} $
Similarly if we consider x + 8 = 0
Then we get x = - 8
Now if we take x = - 8
$ {{\tan }^{-1}}(-8+1)+{{\tan }^{-1}}(-8-1)={{\tan }^{-1}}(-7)+{{\tan }^{-1}}(-9) $
Hence by applying the formula $ {{\tan }^{-1}}A+{{\tan }^{-1}}B $ is given by $ {{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right) $ we get
$ {{\tan }^{-1}}\left( \dfrac{-7-9}{1-(-7)(-9)} \right)={{\tan }^{-1}}\left( \dfrac{-16}{1-63} \right)={{\tan }^{-1}}\left( \dfrac{-16}{-62} \right)={{\tan }^{-1}}\left( \dfrac{8}{31} \right) $
Hence x = -8 does not satisfy the equation.
Now if we take $ x=\dfrac{1}{4} $
$ {{\tan }^{-1}}(\dfrac{1}{4}+1)+{{\tan }^{-1}}(\dfrac{1}{4}-1)={{\tan }^{-1}}\left( \dfrac{5}{4} \right)+{{\tan }^{-1}}\left( -\dfrac{3}{4} \right) $
Hence by applying the formula $ {{\tan }^{-1}}A+{{\tan }^{-1}}B $ is given by $ {{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right) $ we get
\[{{\tan }^{-1}}\left( \dfrac{\dfrac{5}{4}+\left( \dfrac{-3}{4} \right)}{1-\left( \dfrac{5}{4} \right)\left( \dfrac{-3}{4} \right)} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{4}}{1+\dfrac{15}{16}} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{16}{2}}{16+15} \right)={{\tan }^{-1}}\left( \dfrac{8}{31} \right)\]
Hence the values of x = $ \dfrac{1}{4} $ and x = -8 both satisfy the equation.
Note: The formula for $ {{\tan }^{-1}}A+{{\tan }^{-1}}B $ is given by $ {{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right) $ and the formula of $ {{\tan }^{-1}}A-{{\tan }^{-1}}B $ is given by $ {{\tan }^{-1}}\left( \dfrac{A-B}{1+AB} \right) $ note that you take signs properly.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

