
The general solution of sinx – cosx = $\sqrt 2 $, for any integer n is
A. ${\text{n}}\pi $
B. $2{\text{n}}\pi + \dfrac{{3\pi }}{4}$
C. $2{\text{n}}\pi $
D. $(2{\text{n - 1)}}\pi $
Answer
599.7k+ views
Hint: First we divide both sides by $\sqrt {{1^2} + {1^2}} {\text{ i}}{\text{.e}}{\text{. }}\sqrt 2 $. Then we write $\dfrac{1}{{\sqrt 2 }}$in terms of ${\text{sin4}}{{\text{5}}^0}$ and ${\text{cos4}} {{\text{5}}^0}$. After this we will simplify the LHS using the formula of cos(A+B). At last we will use the formula for finding the general solution of cosx = ${\text{cos}}\theta $.
Complete Step-by-Step solution:
The given equation is:
sinx – cosx = $\sqrt 2 $. --------------- (1)
Comparing with asinx + bcosx = c, we get:
a = 1
b = -1 and
c = $\sqrt 2 $.
Dividing both sides of equation 1 by $\sqrt {{{\text{a}}^2} + {{\text{b}}^2}} {\text{ i}}{\text{.e }}\sqrt {{1^2} + {1^2}} = \sqrt 2 $, we get:
$\dfrac{1}{{\sqrt 2 }}{\text{sinx - }}\dfrac{1}{{\sqrt 2 }}{\text{cosx = }}\dfrac{{\sqrt 2 }}{{\sqrt 2 }} = 1$ ------------------- (2)
We know that ${\text{sin13}}{{\text{5}}^0} = \dfrac{1}{{\sqrt 2 }}{\text{ and cos13}}{{\text{5}}^0} = - \dfrac{1}{{\sqrt 2 }}$ and also ${\text{cos}}{{\text{0}}^0} = 1$.
So putting these values in equation 2, we get:
${\text{sin13}}{{\text{5}}^0}{\text{sinx + cos13}}{{\text{5}}^0}{\text{cosx = cos}}{{\text{0}}^0}$
$ \Rightarrow \cos {135^0}{\text{cosx + sin13}}{{\text{5}}^0}{\text{sinx }} = {\text{cos}}{{\text{0}}^0}$ . -------------- (3)
We know that Cos(A-B) = CosACosB + SinASinB.
Therefore, the above equation can be written as:
${\text{cos}}\left( {x - {{135}^0}} \right) = {\text{cos}}{{\text{0}}^0}$.
${\text{cos}}\left( {x - \dfrac{{3\pi }}{4}} \right) = {\text{cos}}{{\text{0}}^0}$ ------ (4)
Now, the general solution of cosx = ${\text{cos}}\theta $ is given as:
x = $2{\text{n}}\pi \pm \theta {\text{, where }}\theta \in {\text{(0,}}\pi {\text{)}}$
Therefore, the solution of equation 4 can be written as:
$x - \dfrac{{3\pi }}{4} = 2{\text{n}}\pi \pm {\text{0 = 2n}}\pi $
$ \Rightarrow x = {\text{2n}}\pi + \dfrac{{3\pi }}{4}$ .
Hence, option B is correct.
Note: In the question involving the solution of trigonometric equation, you have to convert the given equation in some standard for whose general is known. Some of the general solution that you should remember are:
$
{\text{1}}{\text{. sinx = 0 }} \Rightarrow {\text{ x = n}}\pi \\
2.\cos x = 0 \Rightarrow {\text{ x = n}}\pi + \pi /2 \\
3.\tan x = 0 \Rightarrow {\text{ x = n}}\pi \\
4.\cos x = \cos \theta \Rightarrow {\text{ x = 2n}}\pi \pm \theta ,{\text{where }}\theta \in {\text{(0,}}\pi {\text{)}} \\
{\text{5}}{\text{.sin}}x = \sin \theta \Rightarrow {\text{ x = n}}\pi \pm {( - 1)^n}\theta ,{\text{where }}\theta \in {\text{( - }}\pi {\text{/2,}}\pi /2{\text{)}} \\
{\text{6}}{\text{.tan}}x = \tan \theta \Rightarrow {\text{ x = n}}\pi + \theta ,{\text{where }}\theta \in {\text{( - }}\pi {\text{/2,}}\pi /2{\text{)}} \\
$
Complete Step-by-Step solution:
The given equation is:
sinx – cosx = $\sqrt 2 $. --------------- (1)
Comparing with asinx + bcosx = c, we get:
a = 1
b = -1 and
c = $\sqrt 2 $.
Dividing both sides of equation 1 by $\sqrt {{{\text{a}}^2} + {{\text{b}}^2}} {\text{ i}}{\text{.e }}\sqrt {{1^2} + {1^2}} = \sqrt 2 $, we get:
$\dfrac{1}{{\sqrt 2 }}{\text{sinx - }}\dfrac{1}{{\sqrt 2 }}{\text{cosx = }}\dfrac{{\sqrt 2 }}{{\sqrt 2 }} = 1$ ------------------- (2)
We know that ${\text{sin13}}{{\text{5}}^0} = \dfrac{1}{{\sqrt 2 }}{\text{ and cos13}}{{\text{5}}^0} = - \dfrac{1}{{\sqrt 2 }}$ and also ${\text{cos}}{{\text{0}}^0} = 1$.
So putting these values in equation 2, we get:
${\text{sin13}}{{\text{5}}^0}{\text{sinx + cos13}}{{\text{5}}^0}{\text{cosx = cos}}{{\text{0}}^0}$
$ \Rightarrow \cos {135^0}{\text{cosx + sin13}}{{\text{5}}^0}{\text{sinx }} = {\text{cos}}{{\text{0}}^0}$ . -------------- (3)
We know that Cos(A-B) = CosACosB + SinASinB.
Therefore, the above equation can be written as:
${\text{cos}}\left( {x - {{135}^0}} \right) = {\text{cos}}{{\text{0}}^0}$.
${\text{cos}}\left( {x - \dfrac{{3\pi }}{4}} \right) = {\text{cos}}{{\text{0}}^0}$ ------ (4)
Now, the general solution of cosx = ${\text{cos}}\theta $ is given as:
x = $2{\text{n}}\pi \pm \theta {\text{, where }}\theta \in {\text{(0,}}\pi {\text{)}}$
Therefore, the solution of equation 4 can be written as:
$x - \dfrac{{3\pi }}{4} = 2{\text{n}}\pi \pm {\text{0 = 2n}}\pi $
$ \Rightarrow x = {\text{2n}}\pi + \dfrac{{3\pi }}{4}$ .
Hence, option B is correct.
Note: In the question involving the solution of trigonometric equation, you have to convert the given equation in some standard for whose general is known. Some of the general solution that you should remember are:
$
{\text{1}}{\text{. sinx = 0 }} \Rightarrow {\text{ x = n}}\pi \\
2.\cos x = 0 \Rightarrow {\text{ x = n}}\pi + \pi /2 \\
3.\tan x = 0 \Rightarrow {\text{ x = n}}\pi \\
4.\cos x = \cos \theta \Rightarrow {\text{ x = 2n}}\pi \pm \theta ,{\text{where }}\theta \in {\text{(0,}}\pi {\text{)}} \\
{\text{5}}{\text{.sin}}x = \sin \theta \Rightarrow {\text{ x = n}}\pi \pm {( - 1)^n}\theta ,{\text{where }}\theta \in {\text{( - }}\pi {\text{/2,}}\pi /2{\text{)}} \\
{\text{6}}{\text{.tan}}x = \tan \theta \Rightarrow {\text{ x = n}}\pi + \theta ,{\text{where }}\theta \in {\text{( - }}\pi {\text{/2,}}\pi /2{\text{)}} \\
$
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

