
The fundamental frequency of sonometer wire is $n$. If the length, tension and diameter are tripled, the new fundamental frequency is:
\[\begin{align}
& A.\ \ \ \dfrac{n}{\sqrt{3}} \\
& B.\ \ \ \dfrac{n}{3} \\
& C.\ \ \ n\sqrt{3} \\
& D.\ \ \ \dfrac{n}{3\sqrt{3}} \\
\end{align}\]
Answer
565.8k+ views
Hint: First calculate the frequency of sonometer wire at its original length, diameter and tension. After that calculate the frequency of sonometer wire when length, diameter, and tension is tripled. Compare both the frequency to get a relation between them.
Formula used:
Frequency of oscillation of any wire of length $l$ mass $m$ and tension on string $T$ is
$f=\dfrac{1}{2l}\sqrt{\dfrac{T}{m}}$
Mass of any material of volume $V$and density $\rho$is $m=V\rho $
Volume$V=\text{ length}\times \text{ area of cross-section}$
Area of cross-section of a surface of diameter $d$ is $A=\dfrac{\pi {{d}^{2}}}{4}$
Complete answer:
Let the initial length of the wire be $l$,diameter be $d$ and the tension on the wire be $T$, then the frequency is given by
\[n=\dfrac{1}{2l}\sqrt{\dfrac{T}{m}}\]
If the wire has $\text{density}=\rho $. Then mass of the object is given by
$\begin{align}
& m=\text{ volume}\times \text{density} \\
& \Rightarrow m\text{=Area}\times \text{length}\times \text{density} \\
& \Rightarrow m=\pi \dfrac{{{d}^{2}}}{4}\times l\times \rho =\dfrac{\pi {{d}^{2}}l\rho }{4} \\
\end{align}$
So, \[n=\dfrac{1}{2l}\sqrt{\dfrac{T}{\left( \dfrac{\pi {{d}^{2}}l\rho }{4} \right)}}\]
When the length, diameter and tension is tripled then the new frequency will be
\[n'=\dfrac{1}{2l'}\sqrt{\dfrac{T'}{m'}}\]
Here $l'=3l,T'=3T,$
The mass of the wire now will be
$m=\dfrac{\pi d{{'}^{2}}l'\rho }{4}=\dfrac{\pi {{\left( 3d \right)}^{2}}3l\rho }{4}=27\dfrac{\pi {{d}^{2}}l\rho }{4}=27m$ ($\because m=\dfrac{\pi {{d}^{2}}l\rho }{4}$)
Now the frequency becomes,
\[n'=\dfrac{1}{2\times 3l}\sqrt{\dfrac{3T}{27m}}=\dfrac{1}{9}\times \dfrac{1}{2l}\sqrt{\dfrac{T}{m}}=\dfrac{n}{9}\]
So, the correct answer is “Option B”.
Additional Information:
Frequency is defined as the number of oscillations or occurrence per unit time. The unit of frequency is Hertz. Frequency is also defined as the reciprocal of time period. From the above calculation you can see that by increasing the length and diameter of the cross-section of wire the frequency decreases.
Note:
For problems like this, first calculate frequency in the original case, and then calculate the frequency for the changed case. Compare both of them to get a relationship between them. You can also calculate the time period because the time period is reciprocal of frequency.
$\text{Time period}=\dfrac{1}{\text{frequency}}$
When the tension on the wire is large the wire will break. This breaking point is called breaking stress. So breaking stress is defined as the force on the wire per unit cross-sectional area.
Formula used:
Frequency of oscillation of any wire of length $l$ mass $m$ and tension on string $T$ is
$f=\dfrac{1}{2l}\sqrt{\dfrac{T}{m}}$
Mass of any material of volume $V$and density $\rho$is $m=V\rho $
Volume$V=\text{ length}\times \text{ area of cross-section}$
Area of cross-section of a surface of diameter $d$ is $A=\dfrac{\pi {{d}^{2}}}{4}$
Complete answer:
Let the initial length of the wire be $l$,diameter be $d$ and the tension on the wire be $T$, then the frequency is given by
\[n=\dfrac{1}{2l}\sqrt{\dfrac{T}{m}}\]
If the wire has $\text{density}=\rho $. Then mass of the object is given by
$\begin{align}
& m=\text{ volume}\times \text{density} \\
& \Rightarrow m\text{=Area}\times \text{length}\times \text{density} \\
& \Rightarrow m=\pi \dfrac{{{d}^{2}}}{4}\times l\times \rho =\dfrac{\pi {{d}^{2}}l\rho }{4} \\
\end{align}$
So, \[n=\dfrac{1}{2l}\sqrt{\dfrac{T}{\left( \dfrac{\pi {{d}^{2}}l\rho }{4} \right)}}\]
When the length, diameter and tension is tripled then the new frequency will be
\[n'=\dfrac{1}{2l'}\sqrt{\dfrac{T'}{m'}}\]
Here $l'=3l,T'=3T,$
The mass of the wire now will be
$m=\dfrac{\pi d{{'}^{2}}l'\rho }{4}=\dfrac{\pi {{\left( 3d \right)}^{2}}3l\rho }{4}=27\dfrac{\pi {{d}^{2}}l\rho }{4}=27m$ ($\because m=\dfrac{\pi {{d}^{2}}l\rho }{4}$)
Now the frequency becomes,
\[n'=\dfrac{1}{2\times 3l}\sqrt{\dfrac{3T}{27m}}=\dfrac{1}{9}\times \dfrac{1}{2l}\sqrt{\dfrac{T}{m}}=\dfrac{n}{9}\]
So, the correct answer is “Option B”.
Additional Information:
Frequency is defined as the number of oscillations or occurrence per unit time. The unit of frequency is Hertz. Frequency is also defined as the reciprocal of time period. From the above calculation you can see that by increasing the length and diameter of the cross-section of wire the frequency decreases.
Note:
For problems like this, first calculate frequency in the original case, and then calculate the frequency for the changed case. Compare both of them to get a relationship between them. You can also calculate the time period because the time period is reciprocal of frequency.
$\text{Time period}=\dfrac{1}{\text{frequency}}$
When the tension on the wire is large the wire will break. This breaking point is called breaking stress. So breaking stress is defined as the force on the wire per unit cross-sectional area.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

