
The fundamental frequency of sonometer wire is . If the length, tension and diameter are tripled, the new fundamental frequency is:
Answer
500.1k+ views
Hint: First calculate the frequency of sonometer wire at its original length, diameter and tension. After that calculate the frequency of sonometer wire when length, diameter, and tension is tripled. Compare both the frequency to get a relation between them.
Formula used:
Frequency of oscillation of any wire of length mass and tension on string is
Mass of any material of volume and density is
Volume
Area of cross-section of a surface of diameter is
Complete answer:
Let the initial length of the wire be ,diameter be and the tension on the wire be , then the frequency is given by
If the wire has . Then mass of the object is given by
So,
When the length, diameter and tension is tripled then the new frequency will be
Here
The mass of the wire now will be
( )
Now the frequency becomes,
So, the correct answer is “Option B”.
Additional Information:
Frequency is defined as the number of oscillations or occurrence per unit time. The unit of frequency is Hertz. Frequency is also defined as the reciprocal of time period. From the above calculation you can see that by increasing the length and diameter of the cross-section of wire the frequency decreases.
Note:
For problems like this, first calculate frequency in the original case, and then calculate the frequency for the changed case. Compare both of them to get a relationship between them. You can also calculate the time period because the time period is reciprocal of frequency.
When the tension on the wire is large the wire will break. This breaking point is called breaking stress. So breaking stress is defined as the force on the wire per unit cross-sectional area.
Formula used:
Frequency of oscillation of any wire of length
Mass of any material of volume
Volume
Area of cross-section of a surface of diameter
Complete answer:
Let the initial length of the wire be
If the wire has
So,
When the length, diameter and tension is tripled then the new frequency will be
Here
The mass of the wire now will be
Now the frequency becomes,
So, the correct answer is “Option B”.
Additional Information:
Frequency is defined as the number of oscillations or occurrence per unit time. The unit of frequency is Hertz. Frequency is also defined as the reciprocal of time period. From the above calculation you can see that by increasing the length and diameter of the cross-section of wire the frequency decreases.
Note:
For problems like this, first calculate frequency in the original case, and then calculate the frequency for the changed case. Compare both of them to get a relationship between them. You can also calculate the time period because the time period is reciprocal of frequency.
When the tension on the wire is large the wire will break. This breaking point is called breaking stress. So breaking stress is defined as the force on the wire per unit cross-sectional area.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
