
The function of $x=\dfrac{\log \left( 1+x \right)}{x}\left( x>0 \right)$ is increasing in
a) $\left( 1,\infty \right)$
b) $\left( 0,\infty \right)$
c) $\left( 2,2e \right)$
d) $\dfrac{1}{e},2e$
Answer
608.1k+ views
Hint: Any function f(x) is increasing in any interval, if ${{f}^{'}}\left( x \right)>0$ for that interval, so find the derivative of the given function in the problem. Use division rule of differentiation $\left( \dfrac{u}{v} \right)$ rule given as
Complete step-by-step answer:
$\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}$
i.e. derivative of f(x). Observe the terms ${{f}^{'}}\left( x \right)$ and relate it with the given domain for function (x > 0). Check the value of ${{f}^{'}}\left( x \right)$ for $x\to {{0}^{+}}$ and use the following results to get the answer:
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+x \right)}{x}=1$
Now coming to the question, we are given a function as
$x-\dfrac{\log \left( 1+x \right)}{x}\Rightarrow x>0$
Hence, we need to determine the interval in which it will be increasing. So, let the given function is represented by f (x) so we get
$f\left( x \right)=x-\dfrac{\log \left( 1+x \right)}{x}...................\left( i \right)$
Where domain is defined as x > 0 i.e. $x\in \left( 0,\infty \right)$ . Now to get the interval where f (x) will be increasing, let us differentiate f (x) i.e. calculate ${{f}^{'}}\left( x \right)$ . So, we get
$\begin{align}
& {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left( x-\dfrac{\log \left( 1+x \right)}{x} \right) \\
& {{f}^{'}}\left( x \right)=\dfrac{dx}{dx}-\dfrac{d}{dx}\left( x-\dfrac{\log \left( 1+x \right)}{x} \right) \\
\end{align}$
We know the derivative of ${{x}^{n}}$ is given as
$\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}..........................\left( ii \right)$
Hence, we get ${{f}^{'}}\left( x \right)$ as
${{f}^{'}}\left( x \right)=1-\dfrac{d}{dx}\left( \dfrac{\log \left( 1+x \right)}{x} \right)...........................\left( iii \right)$
Now as the term $\dfrac{\log \left( 1+x \right)}{x}$ in the above equation is fraction, so we need to apply division rule of differentiation i.e. $\left( \dfrac{u}{v} \right)$ rule of derivative. So, we know division rule of derivative is defined as
$\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}...............................\left( iv \right)$
Now, we can compare the term $\dfrac{d}{dx}\left( \dfrac{\log \left( 1+x \right)}{x} \right)$ from the equation (iii) and equation (iv) and suppose u = log (1 + x) and v = x. So, we get ${{f}^{'}}\left( x \right)$ as
${{f}^{1}}\left( x \right)=1-\dfrac{x\dfrac{d}{dx}\left( \log \left( 1+x \right) \right)-\log \left( 1+x \right)\dfrac{dx}{dx}}{{{x}^{2}}}$
Now, we know
$\dfrac{d}{dx}\log x=\dfrac{1}{x}......................\left( v \right)$
So, we get ${{f}^{'}}\left( x \right)$ as
$\begin{align}
& {{f}^{1}}\left( x \right)=1-\dfrac{x\times \dfrac{1}{1+x}-\log \left( 1+x \right)\times 1}{{{x}^{2}}} \\
& {{f}^{1}}\left( x \right)=1-\left[ \dfrac{x}{{{x}^{2}}\left( 1+x \right)}-\dfrac{\log \left( 1+x \right)}{{{x}^{2}}} \right] \\
& {{f}^{1}}\left( x \right)=1+\dfrac{\log \left( 1+x \right)}{{{x}^{2}}}-\dfrac{1}{x\left( 1+x \right)}.........................\left( vi \right) \\
\end{align}$
Now, as we know any function is increasing if ${{f}^{1}}\left( x \right)>0$ for the given interval. It means we have to put ${{f}^{1}}\left( x \right)>0$ for getting the interval for x so that f (x) is increasing. So, write ${{f}^{1}}\left( x \right)$ as
${{f}^{1}}\left( x \right)>0.................\left( vii \right)$
Now, as the domain of the function f (x) is x > 0 or $x\in \left( 0,\infty \right)$ . It means we can put only positive values of x to the function f (x) and hence, to the ${{f}^{1}}\left( x \right)$ as well. So, we get domain of ${{f}^{1}}\left( x \right)$ as x > 0………………..(viii)
Now, observe the terms of the equation (vi). First term is ‘1’ which will always be positive for any x from the domain.
Second term $\dfrac{\log \left( 1+x \right)}{{{x}^{2}}}$ will also be positive for x > 0, as we know the range of log x for x > 0 is $\left( -\infty ,\infty \right)$ , where log x gives
$\left( -\infty ,0 \right)\to x\in \left( 0,1 \right),\left( 0,\infty \right)\to x>1$
Now we have to observe function log (1 + x) in place of log x for the same domain x > 0. As we can observe 1 + x will give $\left( 1,\infty \right)$ for x > 0 in the following way:
x > 0
Add 1 to both sides of the equation
1 + x > 1
Now as we can see log (1 + x) will receive values from $1\to \infty $ inside the bracket and hence it will not give any negative value (log x is an increasing function and log 1 = 0). Hence, log (1 + x) will also be a positive value.
And the denominator ${{x}^{2}}$ will always be a positive term as square of any real number will always be a positive term. It means $\dfrac{\log \left( 1+x \right)}{{{x}^{2}}}$ will be a positive term. Now coming to the last term i.e. $\dfrac{-1}{x\left( x+1 \right)}$ it will give a negative value for x > 0. And as the terms x (x + 1) are written in denominator so x (x + 1) will increase when x will increase from$0\to \infty $ , it means the whole terms $\dfrac{1}{x\left( x+1 \right)}$ will decrease and at $x\to \infty $ the term will become 0. So, let us observe the value of ${{f}^{1}}\left( x \right)$ at $x\to {{0}^{+}}$ (we cannot x = 0 as x = 0 is not considered in the domain).
So, let us calculate limit of ${{f}^{1}}\left( x \right)$ at $x\to {{0}^{+}}$ we get
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ 1+\dfrac{\log \left( 1+x \right)}{{{x}^{2}}}-\dfrac{1}{x\left( 1+x \right)} \right]$
So, let us replace x by 0 + h, where $h\to 0$ . So, we get the above expression as
$\begin{align}
& =\underset{h\to 0}{\mathop{\lim }}\,\left[ 1+\dfrac{\log \left( 1+0+h \right)}{{{\left( 0+h \right)}^{2}}}-\dfrac{1}{\left( 0+h \right)\left( 1+0+h \right)} \right] \\
& =\underset{h\to 0}{\mathop{\lim }}\,\left[ 1+\dfrac{\log \left( 1+h \right)}{{{h}^{2}}}-\dfrac{1}{h\left( 1+h \right)} \right] \\
& =\underset{h\to 0}{\mathop{\lim }}\,1+=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\dfrac{\log \left( 1+h \right)}{h}-=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h\left( h+1 \right)}..........................\left( \text{ix} \right) \\
\end{align}$
As, we know the value of $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+x \right)}{x}$ is given as
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+x \right)}{x}=1............................\left( \text{x} \right)$
So, we can get the equation (ix) with the help of equation (x) as
$\begin{align}
& =\underset{h\to 0}{\mathop{\lim }}\,1+\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\times 1-\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h\left( h+1 \right)} \\
& =1+\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{1}{h}-\dfrac{1}{h\left( h+1 \right)} \right] \\
& =1+\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{h+1-1}{h\left( h+1 \right)} \right] \\
& =1+\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{1+h} \\
& =1+1 \\
& =2 \\
\end{align}$
So, we get
$\lim x\to {{0}^{+}}{{f}^{'}}\left( x \right)=2$
So, we get that ${{f}^{'}}\left( x \right)$ will give 2 for $x\to {{0}^{+}}$ , now a per the terms of ${{f}^{'}}\left( x \right)$ the negative term $\dfrac{-1}{x\left( x+1 \right)}$ will decrease when x will increase from $0\to \infty $ . it means ${{f}^{'}}\left( x \right)$ will increase for the interval $\left( 0,\infty \right)$ and as $\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2$ i.e. greater than 0. Hence ${{f}^{'}}\left( x \right)$ will always be greater than 0 for $x\in \left( 0,\infty \right)$ . Hence the function $x-\dfrac{\log \left( 1+x \right)}{x}$ will increase for $x\in \left( 0,\infty \right)$ for the domain $x\in \left( 0,\infty \right)$ .
So, option (b) is correct.
Note:
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+x \right)}{x}=1$
Can be proved as, put the expression of log (1 + x) as
$\begin{align}
& \log \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+.................. \\
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+.................}{x} \\
& \underset{x\to 0}{\mathop{\lim }}\,1-\dfrac{x}{2}+\dfrac{{{x}^{2}}}{3}-\dfrac{{{x}^{3}}}{4}+................. \\
& =1-0=1 \\
\end{align}$
Don’t confuse with the term
$\dfrac{\log \left( 1+x \right)}{{{x}^{2}}}$
We can observe that log (1 + x) will be greater than 0 for x > 0. So, don’t confuse this part of the problem.
Complete step-by-step answer:
$\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}$
i.e. derivative of f(x). Observe the terms ${{f}^{'}}\left( x \right)$ and relate it with the given domain for function (x > 0). Check the value of ${{f}^{'}}\left( x \right)$ for $x\to {{0}^{+}}$ and use the following results to get the answer:
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+x \right)}{x}=1$
Now coming to the question, we are given a function as
$x-\dfrac{\log \left( 1+x \right)}{x}\Rightarrow x>0$
Hence, we need to determine the interval in which it will be increasing. So, let the given function is represented by f (x) so we get
$f\left( x \right)=x-\dfrac{\log \left( 1+x \right)}{x}...................\left( i \right)$
Where domain is defined as x > 0 i.e. $x\in \left( 0,\infty \right)$ . Now to get the interval where f (x) will be increasing, let us differentiate f (x) i.e. calculate ${{f}^{'}}\left( x \right)$ . So, we get
$\begin{align}
& {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left( x-\dfrac{\log \left( 1+x \right)}{x} \right) \\
& {{f}^{'}}\left( x \right)=\dfrac{dx}{dx}-\dfrac{d}{dx}\left( x-\dfrac{\log \left( 1+x \right)}{x} \right) \\
\end{align}$
We know the derivative of ${{x}^{n}}$ is given as
$\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}..........................\left( ii \right)$
Hence, we get ${{f}^{'}}\left( x \right)$ as
${{f}^{'}}\left( x \right)=1-\dfrac{d}{dx}\left( \dfrac{\log \left( 1+x \right)}{x} \right)...........................\left( iii \right)$
Now as the term $\dfrac{\log \left( 1+x \right)}{x}$ in the above equation is fraction, so we need to apply division rule of differentiation i.e. $\left( \dfrac{u}{v} \right)$ rule of derivative. So, we know division rule of derivative is defined as
$\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}...............................\left( iv \right)$
Now, we can compare the term $\dfrac{d}{dx}\left( \dfrac{\log \left( 1+x \right)}{x} \right)$ from the equation (iii) and equation (iv) and suppose u = log (1 + x) and v = x. So, we get ${{f}^{'}}\left( x \right)$ as
${{f}^{1}}\left( x \right)=1-\dfrac{x\dfrac{d}{dx}\left( \log \left( 1+x \right) \right)-\log \left( 1+x \right)\dfrac{dx}{dx}}{{{x}^{2}}}$
Now, we know
$\dfrac{d}{dx}\log x=\dfrac{1}{x}......................\left( v \right)$
So, we get ${{f}^{'}}\left( x \right)$ as
$\begin{align}
& {{f}^{1}}\left( x \right)=1-\dfrac{x\times \dfrac{1}{1+x}-\log \left( 1+x \right)\times 1}{{{x}^{2}}} \\
& {{f}^{1}}\left( x \right)=1-\left[ \dfrac{x}{{{x}^{2}}\left( 1+x \right)}-\dfrac{\log \left( 1+x \right)}{{{x}^{2}}} \right] \\
& {{f}^{1}}\left( x \right)=1+\dfrac{\log \left( 1+x \right)}{{{x}^{2}}}-\dfrac{1}{x\left( 1+x \right)}.........................\left( vi \right) \\
\end{align}$
Now, as we know any function is increasing if ${{f}^{1}}\left( x \right)>0$ for the given interval. It means we have to put ${{f}^{1}}\left( x \right)>0$ for getting the interval for x so that f (x) is increasing. So, write ${{f}^{1}}\left( x \right)$ as
${{f}^{1}}\left( x \right)>0.................\left( vii \right)$
Now, as the domain of the function f (x) is x > 0 or $x\in \left( 0,\infty \right)$ . It means we can put only positive values of x to the function f (x) and hence, to the ${{f}^{1}}\left( x \right)$ as well. So, we get domain of ${{f}^{1}}\left( x \right)$ as x > 0………………..(viii)
Now, observe the terms of the equation (vi). First term is ‘1’ which will always be positive for any x from the domain.
Second term $\dfrac{\log \left( 1+x \right)}{{{x}^{2}}}$ will also be positive for x > 0, as we know the range of log x for x > 0 is $\left( -\infty ,\infty \right)$ , where log x gives
$\left( -\infty ,0 \right)\to x\in \left( 0,1 \right),\left( 0,\infty \right)\to x>1$
Now we have to observe function log (1 + x) in place of log x for the same domain x > 0. As we can observe 1 + x will give $\left( 1,\infty \right)$ for x > 0 in the following way:
x > 0
Add 1 to both sides of the equation
1 + x > 1
Now as we can see log (1 + x) will receive values from $1\to \infty $ inside the bracket and hence it will not give any negative value (log x is an increasing function and log 1 = 0). Hence, log (1 + x) will also be a positive value.
And the denominator ${{x}^{2}}$ will always be a positive term as square of any real number will always be a positive term. It means $\dfrac{\log \left( 1+x \right)}{{{x}^{2}}}$ will be a positive term. Now coming to the last term i.e. $\dfrac{-1}{x\left( x+1 \right)}$ it will give a negative value for x > 0. And as the terms x (x + 1) are written in denominator so x (x + 1) will increase when x will increase from$0\to \infty $ , it means the whole terms $\dfrac{1}{x\left( x+1 \right)}$ will decrease and at $x\to \infty $ the term will become 0. So, let us observe the value of ${{f}^{1}}\left( x \right)$ at $x\to {{0}^{+}}$ (we cannot x = 0 as x = 0 is not considered in the domain).
So, let us calculate limit of ${{f}^{1}}\left( x \right)$ at $x\to {{0}^{+}}$ we get
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ 1+\dfrac{\log \left( 1+x \right)}{{{x}^{2}}}-\dfrac{1}{x\left( 1+x \right)} \right]$
So, let us replace x by 0 + h, where $h\to 0$ . So, we get the above expression as
$\begin{align}
& =\underset{h\to 0}{\mathop{\lim }}\,\left[ 1+\dfrac{\log \left( 1+0+h \right)}{{{\left( 0+h \right)}^{2}}}-\dfrac{1}{\left( 0+h \right)\left( 1+0+h \right)} \right] \\
& =\underset{h\to 0}{\mathop{\lim }}\,\left[ 1+\dfrac{\log \left( 1+h \right)}{{{h}^{2}}}-\dfrac{1}{h\left( 1+h \right)} \right] \\
& =\underset{h\to 0}{\mathop{\lim }}\,1+=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\dfrac{\log \left( 1+h \right)}{h}-=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h\left( h+1 \right)}..........................\left( \text{ix} \right) \\
\end{align}$
As, we know the value of $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+x \right)}{x}$ is given as
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+x \right)}{x}=1............................\left( \text{x} \right)$
So, we can get the equation (ix) with the help of equation (x) as
$\begin{align}
& =\underset{h\to 0}{\mathop{\lim }}\,1+\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\times 1-\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h\left( h+1 \right)} \\
& =1+\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{1}{h}-\dfrac{1}{h\left( h+1 \right)} \right] \\
& =1+\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{h+1-1}{h\left( h+1 \right)} \right] \\
& =1+\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{1+h} \\
& =1+1 \\
& =2 \\
\end{align}$
So, we get
$\lim x\to {{0}^{+}}{{f}^{'}}\left( x \right)=2$
So, we get that ${{f}^{'}}\left( x \right)$ will give 2 for $x\to {{0}^{+}}$ , now a per the terms of ${{f}^{'}}\left( x \right)$ the negative term $\dfrac{-1}{x\left( x+1 \right)}$ will decrease when x will increase from $0\to \infty $ . it means ${{f}^{'}}\left( x \right)$ will increase for the interval $\left( 0,\infty \right)$ and as $\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2$ i.e. greater than 0. Hence ${{f}^{'}}\left( x \right)$ will always be greater than 0 for $x\in \left( 0,\infty \right)$ . Hence the function $x-\dfrac{\log \left( 1+x \right)}{x}$ will increase for $x\in \left( 0,\infty \right)$ for the domain $x\in \left( 0,\infty \right)$ .
So, option (b) is correct.
Note:
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+x \right)}{x}=1$
Can be proved as, put the expression of log (1 + x) as
$\begin{align}
& \log \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+.................. \\
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+.................}{x} \\
& \underset{x\to 0}{\mathop{\lim }}\,1-\dfrac{x}{2}+\dfrac{{{x}^{2}}}{3}-\dfrac{{{x}^{3}}}{4}+................. \\
& =1-0=1 \\
\end{align}$
Don’t confuse with the term
$\dfrac{\log \left( 1+x \right)}{{{x}^{2}}}$
We can observe that log (1 + x) will be greater than 0 for x > 0. So, don’t confuse this part of the problem.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

