
The freezing point ( in $^{\circ }C$) of a solution containing 0.1 g of ${{K}_{3}}[Fe{{(CN)}_{6}}]$ (Mol. Wt. 329) in 100 g of water (${{K}_{f}}$ = ${{1.86}^{\circ }}C\text{ kg/mol}$) is:
(A) $-2.3\text{ x 1}{{\text{0}}^{-2}}$
(B) $-5.7\text{ x 1}{{\text{0}}^{-2}}$
(C) $-5.7\text{ x 1}{{\text{0}}^{-3}}$
(D) $-1.2\text{ x 1}{{\text{0}}^{-2}}$
Answer
581.1k+ views
Hint: First calculate the i for the reaction. The mass of hydrochloric acid can be calculated by the formula of depression in freezing point,$\Delta {{T}_{f}}=i\ \text{x }{{K}_{f}}\text{ x }\dfrac{{{w}_{2}}}{{{M}_{2}}}\text{ x }\dfrac{1000}{{{w}_{1}}}$ , $\Delta {{T}_{f}}$ is the depression in freezing point, ${{w}_{2}}$ is the mass of the solute in gram, ${{M}_{2}}$ is the molar mass of the solute, and ${{w}_{1}}$is mass of the solvent in gram.
Complete step by step solution:
Let us see what is the depression in freezing point.
The temperature at which there is equilibrium between the solid and the liquid form of the substance i.eThe solid and liquid form has the same vapour pressure is known as the freezing point of the substance. It is observed that the freezing point of the solution is always lower than that of pure solvent; this is known as the depression in freezing point.
The depression of freezing point depends on the solute in a solution and has found to be related to the molality’ as below:
\[\Delta {{T}_{f}}={{K}_{f}}\text{ x }m\]
${{K}_{f}}$ is the molal depression constant.
So, by expanding the above formula, we get:
\[\Rightarrow \Delta {{T}_{f}}={{K}_{f}}\text{ x }\dfrac{{{w}_{2}}}{{{M}_{2}}}\text{ x }\dfrac{1000}{{{w}_{1}}}\]
Since, ${{K}_{3}}[Fe{{(CN)}_{6}}]$ionizes, the above formula will become:
$\Rightarrow \Delta {{T}_{f}}=i\ \text{x }{{K}_{f}}\text{ x }\dfrac{{{w}_{2}}}{{{M}_{2}}}\text{ x }\dfrac{1000}{{{w}_{1}}}$
Where, $\Delta {{T}_{f}}$ is the depression in freezing point,
${{w}_{2}}$ is the mass of the solute in gram,
${{M}_{2}}$ is the molar mass of the solute,
${{w}_{1}}$ is the mass of the solvent in gram.
For the value of $i$:
$\Rightarrow {{K}_{3}}[Fe{{(CN)}_{6}}]\to 3{{K}^{+}}+{{[Fe{{(CN)}_{6}}]}^{3-}}$
$i$ is $4$
So, according to the question:
${{w}_{1}}$ is the mass of solute = $0.1 g$
${{M}_{2}}$ = Molar mass of the solute = $329$
${{w}_{1}}$ = Mass of the solvent (water) = $100 g$
Now putting all these in the formula:
$\Rightarrow \Delta {{T}_{f}}=4\ \text{x 1}\text{.86 x }\dfrac{0.1}{329}\text{ x }\dfrac{1000}{100}$
$\Rightarrow \Delta {{T}_{f}}=2.3\text{ x 1}{{\text{0}}^{-2}}$
The $\Delta {{T}_{f}}$ is calculated as the difference of freezing point of water to the solution.
$\Rightarrow \Delta {{T}_{f}}={{T}_{f}}^{\circ }-{{T}_{f}}$
So ${{T}_{f}}$ will be: ${{T}_{f}}={{T}_{f}}^{\circ }-\Delta {{T}_{f}}$
$\Rightarrow {{T}_{f}}$= $0-2.3\text{ x 1}{{\text{0}}^{-2}}=-2.3\text{ x 1}{{\text{0}}^{-2}}^{\circ }C$
So, the correct answer is an option (A) $-2.3\text{ x 1}{{\text{0}}^{-2}}$.
Note: The mass of the solvent should always be taken in grams, if it is given in litres, then convert it into grams. ${{K}_{f}}$ is also called the cryoscopic constant of the solvent. Depression in freezing point is a colligative property because it depends on the number of moles of the solute.
Complete step by step solution:
Let us see what is the depression in freezing point.
The temperature at which there is equilibrium between the solid and the liquid form of the substance i.eThe solid and liquid form has the same vapour pressure is known as the freezing point of the substance. It is observed that the freezing point of the solution is always lower than that of pure solvent; this is known as the depression in freezing point.
The depression of freezing point depends on the solute in a solution and has found to be related to the molality’ as below:
\[\Delta {{T}_{f}}={{K}_{f}}\text{ x }m\]
${{K}_{f}}$ is the molal depression constant.
So, by expanding the above formula, we get:
\[\Rightarrow \Delta {{T}_{f}}={{K}_{f}}\text{ x }\dfrac{{{w}_{2}}}{{{M}_{2}}}\text{ x }\dfrac{1000}{{{w}_{1}}}\]
Since, ${{K}_{3}}[Fe{{(CN)}_{6}}]$ionizes, the above formula will become:
$\Rightarrow \Delta {{T}_{f}}=i\ \text{x }{{K}_{f}}\text{ x }\dfrac{{{w}_{2}}}{{{M}_{2}}}\text{ x }\dfrac{1000}{{{w}_{1}}}$
Where, $\Delta {{T}_{f}}$ is the depression in freezing point,
${{w}_{2}}$ is the mass of the solute in gram,
${{M}_{2}}$ is the molar mass of the solute,
${{w}_{1}}$ is the mass of the solvent in gram.
For the value of $i$:
$\Rightarrow {{K}_{3}}[Fe{{(CN)}_{6}}]\to 3{{K}^{+}}+{{[Fe{{(CN)}_{6}}]}^{3-}}$
$i$ is $4$
So, according to the question:
${{w}_{1}}$ is the mass of solute = $0.1 g$
${{M}_{2}}$ = Molar mass of the solute = $329$
${{w}_{1}}$ = Mass of the solvent (water) = $100 g$
Now putting all these in the formula:
$\Rightarrow \Delta {{T}_{f}}=4\ \text{x 1}\text{.86 x }\dfrac{0.1}{329}\text{ x }\dfrac{1000}{100}$
$\Rightarrow \Delta {{T}_{f}}=2.3\text{ x 1}{{\text{0}}^{-2}}$
The $\Delta {{T}_{f}}$ is calculated as the difference of freezing point of water to the solution.
$\Rightarrow \Delta {{T}_{f}}={{T}_{f}}^{\circ }-{{T}_{f}}$
So ${{T}_{f}}$ will be: ${{T}_{f}}={{T}_{f}}^{\circ }-\Delta {{T}_{f}}$
$\Rightarrow {{T}_{f}}$= $0-2.3\text{ x 1}{{\text{0}}^{-2}}=-2.3\text{ x 1}{{\text{0}}^{-2}}^{\circ }C$
So, the correct answer is an option (A) $-2.3\text{ x 1}{{\text{0}}^{-2}}$.
Note: The mass of the solvent should always be taken in grams, if it is given in litres, then convert it into grams. ${{K}_{f}}$ is also called the cryoscopic constant of the solvent. Depression in freezing point is a colligative property because it depends on the number of moles of the solute.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

