
The following equation \[12{{x}^{4}}-56{{x}^{3}}+89{{x}^{2}}-56x+12=0\] has
(a). four real and distinct roots
(b). two irrational roots
(c). one integer root
(d). two imaginary roots
Answer
615.6k+ views
Hint: Divide the whole expression by \[{{x}^{2}}\]. Simplify and rearrange the expression. Put \[\left( x+\dfrac{1}{x} \right)\] as y. Thus, solve the quadratic equations formed in y. Substitute and solve the 2 quadratic equations formed by x and get the roots of x.
Complete step-by-step answer:
Given us the equation, \[12{{x}^{4}}-56{{x}^{3}}+89{{x}^{2}}-56x+12=0-(1)\]
Now let us divide the entire equation by \[{{x}^{2}}\].
\[\dfrac{12{{x}^{4}}-56{{x}^{3}}+89{{x}^{2}}-56x+12}{{{x}^{2}}}=0\]
Thus we get the equation as,
\[12{{x}^{2}}-56x+89-\dfrac{56}{x}+\dfrac{12}{{{x}^{2}}}=0-(2)\]
Now let us rearrange the above equation,
\[\begin{align}
& 12{{x}^{2}}+\dfrac{12}{{{x}^{2}}}-56x-\dfrac{56}{x}+89=0 \\
& 12\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)-56\left( x+\dfrac{1}{x} \right)+89=0 \\
\end{align}\]
Let us add and subtract 2 in the first term,
\[12\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}}+2-2 \right)-56\left( x+\dfrac{1}{x} \right)+89=0\]
We know, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\].
\[\begin{align}
& \therefore 12\left[ \left( {{x}^{2}}+2+\dfrac{1}{{{x}^{2}}} \right)-2 \right]-56\left[ x+\dfrac{1}{x} \right]+89=0 \\
& 12\left[ {{\left( x+\dfrac{1}{x} \right)}^{2}}-2 \right]-56\left( x+\dfrac{1}{x} \right)+89=0 \\
& 12{{\left( x+\dfrac{1}{x} \right)}^{2}}-\left( 12\times 2 \right)-56\left( x+\dfrac{1}{x} \right)+89=0 \\
& 12{{\left( x+\dfrac{1}{x} \right)}^{2}}-56\left( x+\dfrac{1}{x} \right)+89-24=0 \\
& \therefore 12{{\left( x+\dfrac{1}{x} \right)}^{2}}-56\left( x+\dfrac{1}{x} \right)+65=0-(3) \\
\end{align}\]
Now let us put, \[x+\dfrac{1}{x}=y\] in equation (3).
Thus we get a simplified expression as,
\[12{{y}^{2}}-56y+65=0\]
This expression is similar to the quadratic equation, \[a{{y}^{2}}-by+c=0\].
Thus comparing both the equation, we get
a = 12, b = -56, c =65
Substitute these values in the quadratic formula,
\[y=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}=\dfrac{-\left( -56 \right)\pm \sqrt{{{\left( -56 \right)}^{2}}-4\times 12\times 65}}{2\times 12}\]
\[\begin{align}
& y=\dfrac{56\pm \sqrt{3136-3120}}{24}=\dfrac{56\pm \sqrt{16}}{24} \\
& y=\dfrac{56\pm 4}{24} \\
\end{align}\]
\[\therefore y=\dfrac{56+4}{24}\] and \[y=\dfrac{56-4}{24}\]
\[y=\dfrac{60}{24}=\dfrac{5}{2}\] and \[y=\dfrac{52}{24}=\dfrac{13}{6}\].
Thus we got \[y=\dfrac{5}{2}\] and \[y=\dfrac{13}{6}\].
Thus, \[x+\dfrac{1}{x}=y\] ,substitute the value of y.
\[x+\dfrac{1}{x}=\dfrac{5}{2}\] and \[x+\dfrac{1}{x}=\dfrac{13}{6}\].
Cross multiply and solve the quadratic equation.
\[\dfrac{{{x}^{2}}+1}{2}=\dfrac{5}{2}\] and \[\dfrac{{{x}^{2}}+1}{2}=\dfrac{13}{6}\].
\[2\left( {{x}^{2}}+1 \right)=5x\] and \[6\left( {{x}^{2}}+1 \right)=13x\]
\[2{{x}^{2}}-5x+2=0\] and \[6{{x}^{2}}-13x+6=0\].
Both the equations are similar to the quadratic equation, \[a{{x}^{2}}+bx+c=0\].
Thus for \[2{{x}^{2}}-5x+2=0\]
a = 2, b = -5, c = 2
And for \[6{{x}^{2}}-13x+6=0\]
a = 6 , b = -13, c = 6
Substituting in quadratic formula, \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
\[\begin{align}
& x=\dfrac{-\left( -5 \right)\pm \sqrt{{{\left( -5 \right)}^{2}}-4\times 2\times 2}}{2\times 2} \\
& x=\dfrac{5\pm \sqrt{25-16}}{4} \\
& x=\dfrac{5\pm \sqrt{9}}{4}=\dfrac{5\pm 3}{4} \\
\end{align}\]
Thus, we got \[x=\dfrac{5+3}{4}=2\]
\[x=\dfrac{5-3}{4}=\dfrac{2}{4}=\dfrac{1}{2}\]
\[\begin{align}
& x=\dfrac{-\left( -13 \right)\pm \sqrt{{{\left( -13 \right)}^{2}}-4\times 6\times 6}}{2\times 6} \\
& x=\dfrac{13\pm \sqrt{169-144}}{12} \\
& x=\dfrac{13\pm \sqrt{25}}{12}=\dfrac{13\pm 5}{12} \\
\end{align}\]
Here, \[x=\dfrac{13+5}{12}=\dfrac{18}{12}=\dfrac{3}{2}\]
\[x=\dfrac{13-5}{12}=\dfrac{8}{12}=\dfrac{2}{3}\]
Thus we got four values of \[x=2,\dfrac{1}{2},\dfrac{3}{2},\dfrac{2}{3}\].
\[\therefore \] The equation has 4 real and distinct roots and 2 is an integer root.
\[\therefore \] Option (a) and (c) is the correct answer.
Note: Remember to divide the entire expression by \[{{x}^{2}}\], so as to simplify the expression. Irrational roots are the roots that cannot be expressed in \[\dfrac{p}{q}\] form. Here we have three rational roots that can be expressed in \[\dfrac{p}{q}\] form i.e. \[\dfrac{1}{2},\dfrac{3}{2}\] and \[\dfrac{2}{3}\].
Complete step-by-step answer:
Given us the equation, \[12{{x}^{4}}-56{{x}^{3}}+89{{x}^{2}}-56x+12=0-(1)\]
Now let us divide the entire equation by \[{{x}^{2}}\].
\[\dfrac{12{{x}^{4}}-56{{x}^{3}}+89{{x}^{2}}-56x+12}{{{x}^{2}}}=0\]
Thus we get the equation as,
\[12{{x}^{2}}-56x+89-\dfrac{56}{x}+\dfrac{12}{{{x}^{2}}}=0-(2)\]
Now let us rearrange the above equation,
\[\begin{align}
& 12{{x}^{2}}+\dfrac{12}{{{x}^{2}}}-56x-\dfrac{56}{x}+89=0 \\
& 12\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)-56\left( x+\dfrac{1}{x} \right)+89=0 \\
\end{align}\]
Let us add and subtract 2 in the first term,
\[12\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}}+2-2 \right)-56\left( x+\dfrac{1}{x} \right)+89=0\]
We know, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\].
\[\begin{align}
& \therefore 12\left[ \left( {{x}^{2}}+2+\dfrac{1}{{{x}^{2}}} \right)-2 \right]-56\left[ x+\dfrac{1}{x} \right]+89=0 \\
& 12\left[ {{\left( x+\dfrac{1}{x} \right)}^{2}}-2 \right]-56\left( x+\dfrac{1}{x} \right)+89=0 \\
& 12{{\left( x+\dfrac{1}{x} \right)}^{2}}-\left( 12\times 2 \right)-56\left( x+\dfrac{1}{x} \right)+89=0 \\
& 12{{\left( x+\dfrac{1}{x} \right)}^{2}}-56\left( x+\dfrac{1}{x} \right)+89-24=0 \\
& \therefore 12{{\left( x+\dfrac{1}{x} \right)}^{2}}-56\left( x+\dfrac{1}{x} \right)+65=0-(3) \\
\end{align}\]
Now let us put, \[x+\dfrac{1}{x}=y\] in equation (3).
Thus we get a simplified expression as,
\[12{{y}^{2}}-56y+65=0\]
This expression is similar to the quadratic equation, \[a{{y}^{2}}-by+c=0\].
Thus comparing both the equation, we get
a = 12, b = -56, c =65
Substitute these values in the quadratic formula,
\[y=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}=\dfrac{-\left( -56 \right)\pm \sqrt{{{\left( -56 \right)}^{2}}-4\times 12\times 65}}{2\times 12}\]
\[\begin{align}
& y=\dfrac{56\pm \sqrt{3136-3120}}{24}=\dfrac{56\pm \sqrt{16}}{24} \\
& y=\dfrac{56\pm 4}{24} \\
\end{align}\]
\[\therefore y=\dfrac{56+4}{24}\] and \[y=\dfrac{56-4}{24}\]
\[y=\dfrac{60}{24}=\dfrac{5}{2}\] and \[y=\dfrac{52}{24}=\dfrac{13}{6}\].
Thus we got \[y=\dfrac{5}{2}\] and \[y=\dfrac{13}{6}\].
Thus, \[x+\dfrac{1}{x}=y\] ,substitute the value of y.
\[x+\dfrac{1}{x}=\dfrac{5}{2}\] and \[x+\dfrac{1}{x}=\dfrac{13}{6}\].
Cross multiply and solve the quadratic equation.
\[\dfrac{{{x}^{2}}+1}{2}=\dfrac{5}{2}\] and \[\dfrac{{{x}^{2}}+1}{2}=\dfrac{13}{6}\].
\[2\left( {{x}^{2}}+1 \right)=5x\] and \[6\left( {{x}^{2}}+1 \right)=13x\]
\[2{{x}^{2}}-5x+2=0\] and \[6{{x}^{2}}-13x+6=0\].
Both the equations are similar to the quadratic equation, \[a{{x}^{2}}+bx+c=0\].
Thus for \[2{{x}^{2}}-5x+2=0\]
a = 2, b = -5, c = 2
And for \[6{{x}^{2}}-13x+6=0\]
a = 6 , b = -13, c = 6
Substituting in quadratic formula, \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
\[\begin{align}
& x=\dfrac{-\left( -5 \right)\pm \sqrt{{{\left( -5 \right)}^{2}}-4\times 2\times 2}}{2\times 2} \\
& x=\dfrac{5\pm \sqrt{25-16}}{4} \\
& x=\dfrac{5\pm \sqrt{9}}{4}=\dfrac{5\pm 3}{4} \\
\end{align}\]
Thus, we got \[x=\dfrac{5+3}{4}=2\]
\[x=\dfrac{5-3}{4}=\dfrac{2}{4}=\dfrac{1}{2}\]
\[\begin{align}
& x=\dfrac{-\left( -13 \right)\pm \sqrt{{{\left( -13 \right)}^{2}}-4\times 6\times 6}}{2\times 6} \\
& x=\dfrac{13\pm \sqrt{169-144}}{12} \\
& x=\dfrac{13\pm \sqrt{25}}{12}=\dfrac{13\pm 5}{12} \\
\end{align}\]
Here, \[x=\dfrac{13+5}{12}=\dfrac{18}{12}=\dfrac{3}{2}\]
\[x=\dfrac{13-5}{12}=\dfrac{8}{12}=\dfrac{2}{3}\]
Thus we got four values of \[x=2,\dfrac{1}{2},\dfrac{3}{2},\dfrac{2}{3}\].
\[\therefore \] The equation has 4 real and distinct roots and 2 is an integer root.
\[\therefore \] Option (a) and (c) is the correct answer.
Note: Remember to divide the entire expression by \[{{x}^{2}}\], so as to simplify the expression. Irrational roots are the roots that cannot be expressed in \[\dfrac{p}{q}\] form. Here we have three rational roots that can be expressed in \[\dfrac{p}{q}\] form i.e. \[\dfrac{1}{2},\dfrac{3}{2}\] and \[\dfrac{2}{3}\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

