The figure shows the positions and velocities of two particles. If the particles move under the mutual attraction of each other, then the position of the center of mass at t=1s is:
A). x=5m
B). x= 6m
C). x= 3m
D). x= 2m
Answer
Verified
474.3k+ views
Hint: Find the initial position of centre of mass using the centre of mass formula. Then calculate velocity of centre of mass. From velocity, find the value of displacement and add with the initial position. Thus, you can calculate the position of centre of mass at time t= 1s.
Formula used:
X= $\dfrac {{m}_{1}{x}_{1}+{m}_{2}{x}_{2}}{{m}_{1}+{m}_{2}}$
v= $\dfrac {{m}_{1}{v}_{1}+{m}_{2}{v}_{2}}{{m}_{1}+{m}_{2}}$
Complete step-by-step solution:
Given: mass of both the particles ${m}_{1}$ and ${ m}_{2}$= 1kg
${x}_{1}$= 2m
${x}_{2}$= 8m
Using the centre of mass formula, initial position of centre of mass is given by,
X= $\dfrac {{m}_{1}{x}_{1}+{m}_{2}{x}_{2}}{{m}_{1}+{m}_{2}}$
Substituting values in above equation we get,
X=$\dfrac {1×2 + 1×8}{1+1}$
$\Rightarrow X= \dfrac {10}{2}$
$\Rightarrow X=5m$
Now, using the centre of mass formula, velocity of center of mass is given by,
v= $\dfrac {{m}_{1}{v}_{1}+{m}_{2}{v}_{2}}{{m}_{1}+{m}_{2}}$
Substituting values in above equation we get,
v=$\dfrac {1×5 - 1×3}{1+1}$
$\Rightarrow v= \dfrac {2}{2}$
$\Rightarrow v= 1{m}/{s}$
But $velocity=\dfrac {displacement}{time}$
$\Rightarrow displacement= velocity × time$
Substituting value of time and velocity we get,
$ displacement= 1 × 1$
$\therefore displacement= 1m$
Position of center of mass at t =1s is $5+1= 6m$
Thus, the position of center of mass at t =1s is 6m.
Hence, the correct answer is option B i.e. x=6m.
Note: Here, ${v}_{2}$ is taken negative as the particles are moving in opposite directions. So, take care of the negative sign and don’t consider the velocity of the second particle to be positive.
In the case of rigid bodies, the centre of mass does not depend on the state of the body whether it is in rest or accelerated.
Formula used:
X= $\dfrac {{m}_{1}{x}_{1}+{m}_{2}{x}_{2}}{{m}_{1}+{m}_{2}}$
v= $\dfrac {{m}_{1}{v}_{1}+{m}_{2}{v}_{2}}{{m}_{1}+{m}_{2}}$
Complete step-by-step solution:
Given: mass of both the particles ${m}_{1}$ and ${ m}_{2}$= 1kg
${x}_{1}$= 2m
${x}_{2}$= 8m
Using the centre of mass formula, initial position of centre of mass is given by,
X= $\dfrac {{m}_{1}{x}_{1}+{m}_{2}{x}_{2}}{{m}_{1}+{m}_{2}}$
Substituting values in above equation we get,
X=$\dfrac {1×2 + 1×8}{1+1}$
$\Rightarrow X= \dfrac {10}{2}$
$\Rightarrow X=5m$
Now, using the centre of mass formula, velocity of center of mass is given by,
v= $\dfrac {{m}_{1}{v}_{1}+{m}_{2}{v}_{2}}{{m}_{1}+{m}_{2}}$
Substituting values in above equation we get,
v=$\dfrac {1×5 - 1×3}{1+1}$
$\Rightarrow v= \dfrac {2}{2}$
$\Rightarrow v= 1{m}/{s}$
But $velocity=\dfrac {displacement}{time}$
$\Rightarrow displacement= velocity × time$
Substituting value of time and velocity we get,
$ displacement= 1 × 1$
$\therefore displacement= 1m$
Position of center of mass at t =1s is $5+1= 6m$
Thus, the position of center of mass at t =1s is 6m.
Hence, the correct answer is option B i.e. x=6m.
Note: Here, ${v}_{2}$ is taken negative as the particles are moving in opposite directions. So, take care of the negative sign and don’t consider the velocity of the second particle to be positive.
In the case of rigid bodies, the centre of mass does not depend on the state of the body whether it is in rest or accelerated.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE