
The expression $\dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}}$ can be written as:
A. ${\text{secAcosecA + 1}}$
B. tan A + cot A
C. sec A + cosec A.
D. sin A cos A + 1
Answer
572.7k+ views
Hint: To solve this question, we will use some basic trigonometric identities to simplify the given expression. Some useful identities are: $\cot A = \dfrac{1}{{\tan A}}$, $\cot A = \dfrac{{\cos A}}{{\sin A}}$, $\tan A = \dfrac{{\sin A}}{{\cos A}}$.
Complete step-by-step answer:
We have,
$ \Rightarrow \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}}$ ……… (i)
Replacing $\cot A = \dfrac{1}{{\tan A}}$ in equation (i), we will get
$
\Rightarrow \dfrac{{\tan A}}{{1 - \dfrac{1}{{\tan A}}}} + \dfrac{{\dfrac{1}{{\tan A}}}}{{1 - \tan A}} \\
\Rightarrow \dfrac{{{{\tan }^2}A}}{{\tan A - 1}} + \dfrac{1}{{\tan A\left( {1 - \tan A} \right)}} \\
\Rightarrow \dfrac{{{{\tan }^2}A}}{{\tan A - 1}} - \dfrac{1}{{\tan A\left( {\tan A - 1} \right)}} \\
$
Adding by taking L.C.M $\tan A\left( {\tan A - 1} \right)$
$ \Rightarrow \dfrac{{{{\tan }^3}A - 1}}{{\tan A\left( {\tan A - 1} \right)}}$
Now, expanding ${\tan ^3}A - 1$ by using the identity ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$
We will get,
\[ \Rightarrow \dfrac{{\left( {\tan A - 1} \right)\left( {{{\tan }^2}A + 1 + \tan A} \right)}}{{\tan A\left( {\tan A - 1} \right)}}\]
Dividing numerator and denominator by $\left( {\tan A - 1} \right)$,
\[ \Rightarrow \dfrac{{\left( {{{\tan }^2}A + 1 + \tan A} \right)}}{{\tan A}}\]
Solving this,
\[ \Rightarrow \tan A + \cot A + 1\]
Now, replacing $\cot A = \dfrac{{\cos A}}{{\sin A}}$ and $\tan A = \dfrac{{\sin A}}{{\cos A}}$
\[ \Rightarrow \dfrac{{\sin A}}{{\cos A}} + \dfrac{{\cos A}}{{\sin A}} + 1\]
Adding by taking L.C.M,
\[ \Rightarrow \dfrac{{{{\sin }^2}A + {{\cos }^2}A}}{{\cos A\sin A}} + 1\]
As we know that,
\[{\sin ^2}A + {\cos ^2}A = 1\]
Putting this, we will get
\[
\Rightarrow \dfrac{1}{{\cos A\sin A}} + 1 \\
\Rightarrow \dfrac{1}{{\cos A}} \times \dfrac{1}{{\sin A}} + 1 \\
\Rightarrow {\text{secAcosecA}} + 1 \\
\]
Hence, the expression $\dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}}$ can be written as secAcosecA + 1.
Therefore, the correct answer is option(A).
Note: This question can also be solved by another method using the identities of sin A and cos A. The solution is as follows:
$
\Rightarrow \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} \\
\Rightarrow \dfrac{{\dfrac{{\sin A}}{{\cos A}}}}{{1 - \dfrac{{\cos A}}{{\sin A}}}} + \dfrac{{\dfrac{{\cos A}}{{\sin A}}}}{{1 - \dfrac{{\sin A}}{{\cos A}}}} \\
\\
$
$
\Rightarrow \dfrac{{{{\sin }^2}A}}{{\cos A\left( {\sin A - \cos A} \right)}} - \dfrac{{{{\cos }^2}A}}{{\sin A\left( {\sin A - \cos A} \right)}} \\
\Rightarrow \dfrac{{{{\sin }^3}A - {{\cos }^3}A}}{{\sin A\cos A\left( {\sin A - \cos A} \right)}} \\
\Rightarrow \dfrac{{\left( {\sin A - \cos A} \right)\left( {{{\sin }^2}A + {{\cos }^2}A + \sin A\cos A} \right)}}{{\sin A\cos A\left( {\sin A - \cos A} \right)}} \\
\Rightarrow \dfrac{{\left( {1 + \sin A\cos A} \right)}}{{\sin A\cos A}} \\
\Rightarrow \dfrac{1}{{\sin A\cos A}} + 1 \\
\Rightarrow {\text{secAcosecA + 1}} \\
$
Complete step-by-step answer:
We have,
$ \Rightarrow \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}}$ ……… (i)
Replacing $\cot A = \dfrac{1}{{\tan A}}$ in equation (i), we will get
$
\Rightarrow \dfrac{{\tan A}}{{1 - \dfrac{1}{{\tan A}}}} + \dfrac{{\dfrac{1}{{\tan A}}}}{{1 - \tan A}} \\
\Rightarrow \dfrac{{{{\tan }^2}A}}{{\tan A - 1}} + \dfrac{1}{{\tan A\left( {1 - \tan A} \right)}} \\
\Rightarrow \dfrac{{{{\tan }^2}A}}{{\tan A - 1}} - \dfrac{1}{{\tan A\left( {\tan A - 1} \right)}} \\
$
Adding by taking L.C.M $\tan A\left( {\tan A - 1} \right)$
$ \Rightarrow \dfrac{{{{\tan }^3}A - 1}}{{\tan A\left( {\tan A - 1} \right)}}$
Now, expanding ${\tan ^3}A - 1$ by using the identity ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$
We will get,
\[ \Rightarrow \dfrac{{\left( {\tan A - 1} \right)\left( {{{\tan }^2}A + 1 + \tan A} \right)}}{{\tan A\left( {\tan A - 1} \right)}}\]
Dividing numerator and denominator by $\left( {\tan A - 1} \right)$,
\[ \Rightarrow \dfrac{{\left( {{{\tan }^2}A + 1 + \tan A} \right)}}{{\tan A}}\]
Solving this,
\[ \Rightarrow \tan A + \cot A + 1\]
Now, replacing $\cot A = \dfrac{{\cos A}}{{\sin A}}$ and $\tan A = \dfrac{{\sin A}}{{\cos A}}$
\[ \Rightarrow \dfrac{{\sin A}}{{\cos A}} + \dfrac{{\cos A}}{{\sin A}} + 1\]
Adding by taking L.C.M,
\[ \Rightarrow \dfrac{{{{\sin }^2}A + {{\cos }^2}A}}{{\cos A\sin A}} + 1\]
As we know that,
\[{\sin ^2}A + {\cos ^2}A = 1\]
Putting this, we will get
\[
\Rightarrow \dfrac{1}{{\cos A\sin A}} + 1 \\
\Rightarrow \dfrac{1}{{\cos A}} \times \dfrac{1}{{\sin A}} + 1 \\
\Rightarrow {\text{secAcosecA}} + 1 \\
\]
Hence, the expression $\dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}}$ can be written as secAcosecA + 1.
Therefore, the correct answer is option(A).
Note: This question can also be solved by another method using the identities of sin A and cos A. The solution is as follows:
$
\Rightarrow \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} \\
\Rightarrow \dfrac{{\dfrac{{\sin A}}{{\cos A}}}}{{1 - \dfrac{{\cos A}}{{\sin A}}}} + \dfrac{{\dfrac{{\cos A}}{{\sin A}}}}{{1 - \dfrac{{\sin A}}{{\cos A}}}} \\
\\
$
$
\Rightarrow \dfrac{{{{\sin }^2}A}}{{\cos A\left( {\sin A - \cos A} \right)}} - \dfrac{{{{\cos }^2}A}}{{\sin A\left( {\sin A - \cos A} \right)}} \\
\Rightarrow \dfrac{{{{\sin }^3}A - {{\cos }^3}A}}{{\sin A\cos A\left( {\sin A - \cos A} \right)}} \\
\Rightarrow \dfrac{{\left( {\sin A - \cos A} \right)\left( {{{\sin }^2}A + {{\cos }^2}A + \sin A\cos A} \right)}}{{\sin A\cos A\left( {\sin A - \cos A} \right)}} \\
\Rightarrow \dfrac{{\left( {1 + \sin A\cos A} \right)}}{{\sin A\cos A}} \\
\Rightarrow \dfrac{1}{{\sin A\cos A}} + 1 \\
\Rightarrow {\text{secAcosecA + 1}} \\
$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

