
The expression $\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}$ reduces to:
(a) $\dfrac{1+\sin A}{\cos A}$
(b) $\dfrac{1-\sin A}{\cos A}$
(c) $\dfrac{1+\cos A}{\sin A}$
(d) $\dfrac{1+\cos A}{\cos A}$
Answer
614.4k+ views
Hint: Rationalize the denominator of the given expression and use the trigonometric identity given by ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$ to simplify the given expression and get the reduced the form.
Complete step by step answer:
We have been provided with the expression, $\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}$. Let us assume that its reduced form is $E$. Therefore,
$E=\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}$
This can be written as:
$E=\dfrac{\tan A+(\sec A-1)}{\tan A-(\sec A-1)}$
Rationalizing the denominator we get,
$\begin{align}
& E=\dfrac{\tan A+(\sec A-1)}{\tan A-(\sec A-1)}\times \dfrac{\tan A+(\sec A-1)}{\tan A+(\sec A-1)} \\
& =\dfrac{{{\left[ \tan A+(\sec A-1) \right]}^{2}}}{\left( \tan A-(\sec A-1) \right)\left( \tan A+(\sec A-1) \right)} \\
\end{align}$
Expanding the whole square in the numerator and using the algebraic identity $(a+b)(a-b)={{a}^{2}}-{{b}^{2}}$ in the denominator, we get,
\[\begin{align}
& E=\dfrac{{{\tan }^{2}}A+{{(\sec A-1)}^{2}}+2\tan A(\sec A-1)}{{{\tan }^{2}}A-{{(\sec A-1)}^{2}}} \\
& =\dfrac{{{\tan }^{2}}A+{{\sec }^{2}}A+1-2\sec A+2\tan A(\sec A-1)}{{{\tan }^{2}}A-\left( {{\sec }^{2}}A+1-2\sec A \right)} \\
& =\dfrac{({{\tan }^{2}}A+1)+{{\sec }^{2}}A-2\sec A+2\tan A(\sec A-1)}{{{\tan }^{2}}A-{{\sec }^{2}}A-1+2\sec A} \\
\end{align}\]
Now, we know that, $1+{{\tan }^{2}}A={{\sec }^{2}}A$, applying this identity in the above expression we get,
$\begin{align}
& E=\dfrac{{{\sec }^{2}}A+{{\sec }^{2}}A-2\sec A+2\tan A(\sec A-1)}{-1-1+2\sec A} \\
& =\dfrac{2{{\sec }^{2}}A-2\sec A+2\tan A(\sec A-1)}{-2+2\sec A} \\
& =\dfrac{2\sec A(\sec A-1)+2\tan A(\sec A-1)}{2(\sec A-1)} \\
\end{align}$
Cancelling the common term we get,
$E=\dfrac{\sec A+\tan A}{1}$
Changing, $\sec A=\dfrac{1}{\cos A}\text{ and tanA=}\dfrac{\sin A}{\cos A}$ we have,
$E=\dfrac{\dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A}}{1}$
Multiplying numerator and denominator by $\cos A$, we get,
$E=\dfrac{1+\sin A}{\cos A}$
Hence, option (a) is the correct answer.
Note: It is important to note that this expression can also be simplified by changing $\sec A=\dfrac{1}{\cos A}\text{ and tanA=}\dfrac{\sin A}{\cos A}$ at the initial step. If we are provided with the options just like in the above question, we can directly check the correct option by some value to angle A, like angle A can be substituted ${{0}^{\circ }}$. Remember that, do not substitute angle A equal to ${{90}^{\circ }}$ because at ${{90}^{\circ }}$ tangent and secant of the angle is undefined.
Complete step by step answer:
We have been provided with the expression, $\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}$. Let us assume that its reduced form is $E$. Therefore,
$E=\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}$
This can be written as:
$E=\dfrac{\tan A+(\sec A-1)}{\tan A-(\sec A-1)}$
Rationalizing the denominator we get,
$\begin{align}
& E=\dfrac{\tan A+(\sec A-1)}{\tan A-(\sec A-1)}\times \dfrac{\tan A+(\sec A-1)}{\tan A+(\sec A-1)} \\
& =\dfrac{{{\left[ \tan A+(\sec A-1) \right]}^{2}}}{\left( \tan A-(\sec A-1) \right)\left( \tan A+(\sec A-1) \right)} \\
\end{align}$
Expanding the whole square in the numerator and using the algebraic identity $(a+b)(a-b)={{a}^{2}}-{{b}^{2}}$ in the denominator, we get,
\[\begin{align}
& E=\dfrac{{{\tan }^{2}}A+{{(\sec A-1)}^{2}}+2\tan A(\sec A-1)}{{{\tan }^{2}}A-{{(\sec A-1)}^{2}}} \\
& =\dfrac{{{\tan }^{2}}A+{{\sec }^{2}}A+1-2\sec A+2\tan A(\sec A-1)}{{{\tan }^{2}}A-\left( {{\sec }^{2}}A+1-2\sec A \right)} \\
& =\dfrac{({{\tan }^{2}}A+1)+{{\sec }^{2}}A-2\sec A+2\tan A(\sec A-1)}{{{\tan }^{2}}A-{{\sec }^{2}}A-1+2\sec A} \\
\end{align}\]
Now, we know that, $1+{{\tan }^{2}}A={{\sec }^{2}}A$, applying this identity in the above expression we get,
$\begin{align}
& E=\dfrac{{{\sec }^{2}}A+{{\sec }^{2}}A-2\sec A+2\tan A(\sec A-1)}{-1-1+2\sec A} \\
& =\dfrac{2{{\sec }^{2}}A-2\sec A+2\tan A(\sec A-1)}{-2+2\sec A} \\
& =\dfrac{2\sec A(\sec A-1)+2\tan A(\sec A-1)}{2(\sec A-1)} \\
\end{align}$
Cancelling the common term we get,
$E=\dfrac{\sec A+\tan A}{1}$
Changing, $\sec A=\dfrac{1}{\cos A}\text{ and tanA=}\dfrac{\sin A}{\cos A}$ we have,
$E=\dfrac{\dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A}}{1}$
Multiplying numerator and denominator by $\cos A$, we get,
$E=\dfrac{1+\sin A}{\cos A}$
Hence, option (a) is the correct answer.
Note: It is important to note that this expression can also be simplified by changing $\sec A=\dfrac{1}{\cos A}\text{ and tanA=}\dfrac{\sin A}{\cos A}$ at the initial step. If we are provided with the options just like in the above question, we can directly check the correct option by some value to angle A, like angle A can be substituted ${{0}^{\circ }}$. Remember that, do not substitute angle A equal to ${{90}^{\circ }}$ because at ${{90}^{\circ }}$ tangent and secant of the angle is undefined.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

