
The expression \[\dfrac{{\cos ({{90}^ \circ } + \theta )\sec ( - \theta )\tan ({{180}^ \circ } - \theta )}}{{\sin ({{360}^ \circ } + \theta )\sec ({{180}^ \circ } + \theta )\cot ({{90}^ \circ } - \theta )}}\] is equal to ?
A. 2
B. 1
C. -1
D. 0
Answer
497.7k+ views
Hint:Here, the question is related to the trigonometry topic. By using the trigonometric function for allied angles, we write the value for the respective trigonometric function for the allied angles. On further simplification we obtain the required answer for the given question.
Complete step by step answer:
In trigonometry we have six trigonometric ratios namely, sine, cosine, tangent, cosecant, secant and cotangent. These are abbreviated as sin, cos, tan, csc, sec and cot. The angles will be present in any of the fourth quadrants. The sign of the trigonometric ratio will be based on the ASTC rule.
If an angle is multiple of \[{90^ \circ }\], then \[\sin \Leftrightarrow \cos \], \[\tan \Leftrightarrow \cot \] and \[\sec \Leftrightarrow \csc \]. If an angle is multiple of \[{180^ \circ }\], then \[\sin \Leftrightarrow \sin \], \[\tan \Leftrightarrow \tan \] and \[\sec \Leftrightarrow \sec \]. When the angle is multiple of \[{90^ \circ }\], then it will be converted into the co-ratios of trigonometry. This is called a trigonometric function for allied angles.
The other trigonometric ratios for allied angles is given below:
When the angle is a negative
\[\sin ( - \theta ) = - \sin \theta \\
\Rightarrow \cos ( - \theta ) = \cos \theta \\
\Rightarrow \tan ( - \theta ) = - \tan \theta \\
\Rightarrow \csc ( - \theta ) = - \csc \theta \\
\Rightarrow \sec ( - \theta ) = \sec \theta \\
\Rightarrow \cot ( - \theta ) = - \cot \theta \\ \]
When the angle is the sum of \[{90^ \circ }\]
\[\sin ({90^ \circ } + \theta ) = \cos \theta \\
\Rightarrow \cos ({90^ \circ } + \theta ) = - \sin \theta \\
\Rightarrow \tan ({90^ \circ } + \theta ) = - \cot \theta \\
\Rightarrow \csc ({90^ \circ } + \theta ) = \sec \theta \\
\Rightarrow \sec ({90^ \circ } + \theta ) = - \csc \theta \\
\Rightarrow \cot ({90^ \circ } + \theta ) = - \tan \theta \\ \]
When the angle is the difference of \[{90^ \circ }\]
\[\sin ({90^ \circ } - \theta ) = \cos \theta \\
\Rightarrow \cos ({90^ \circ } - \theta ) = \sin \theta \\
\Rightarrow \tan ({90^ \circ } - \theta ) = \cot \theta \\
\Rightarrow \csc ({90^ \circ } - \theta ) = \sec \theta \\
\Rightarrow \sec ({90^ \circ } - \theta ) = \csc \theta \\
\Rightarrow \cot ({90^ \circ } - \theta ) = \tan \theta \\ \]
When the angle is the sum of \[{180^ \circ }\]
\[\sin ({180^ \circ } + \theta ) = - \sin \theta \\
\Rightarrow \cos ({180^ \circ } + \theta ) = - \cos \theta \\
\Rightarrow \tan ({180^ \circ } + \theta ) = \tan \theta \\
\Rightarrow \csc ({180^ \circ } + \theta ) = - \csc \theta \\
\Rightarrow \sec ({180^ \circ } + \theta ) = - \sec \theta \\
\Rightarrow \cot ({180^ \circ } + \theta ) = \cot \theta \\ \]
When the angle is the difference of \[{180^ \circ }\]
\[\sin ({180^ \circ } - \theta ) = \sin \theta \\
\Rightarrow \cos ({180^ \circ } - \theta ) = - \cos \theta \\
\Rightarrow \tan ({180^ \circ } - \theta ) = - \tan \theta \\
\Rightarrow \csc ({180^ \circ } - \theta ) = \csc \theta \\
\Rightarrow \sec ({180^ \circ } - \theta ) = - \sec \theta \\
\Rightarrow \cot ({180^ \circ } - \theta ) = - \cot \theta \\ \]
When the angle is the sum of \[{360^ \circ }\]
\[\sin ({360^ \circ } + \theta ) = \sin \theta \\
\Rightarrow \cos ({360^ \circ } + \theta ) = \cos \theta \\
\Rightarrow \tan ({360^ \circ } + \theta ) = \tan \theta \\
\Rightarrow \csc ({360^ \circ } + \theta ) = \csc \theta \\
\Rightarrow \sec ({360^ \circ } + \theta ) = \sec \theta \\
\Rightarrow \cot ({360^ \circ } + \theta ) = \cot \theta \\ \]
Now we consider the given question and simplify it
\[\dfrac{{\cos ({{90}^ \circ } + \theta )\sec ( - \theta )\tan ({{180}^ \circ } - \theta )}}{{\sin ({{360}^ \circ } + \theta )\sec ({{180}^ \circ } + \theta )\cot ({{90}^ \circ } - \theta )}}\]
By the trigonometric function for allied angles the above inequality is written as
\[\dfrac{{\sin \theta \times \sec \theta \times - \tan \theta }}{{\sin \theta \times \sec \theta \times \tan \theta }}\]
This can be written as
\[ \Rightarrow \dfrac{{ - (\sin \theta \times \sec \theta \times \tan \theta )}}{{\sin \theta \times \sec \theta \times \tan \theta }}\]
On cancelling the terms in the numerator and denominator we have
\[ \Rightarrow - 1\]
Therefore \[\dfrac{{\cos ({{90}^ \circ } + \theta )\sec ( - \theta )\tan ({{180}^ \circ } - \theta )}}{{\sin ({{360}^ \circ } + \theta )\sec ({{180}^ \circ } + \theta )\cot ({{90}^ \circ } - \theta )}} = - 1\]
Hence the option C is the correct answer.
Note:The ASTC rule is defined as “All Sine Cosine Tangent”. In the first quadrant all, in a second quadrant sine, in a third quadrant cosine and in a fourth quadrant tangent respectively trigonometric ratios are positive. The Allied angles will be based on the ASTC rule.
Complete step by step answer:
In trigonometry we have six trigonometric ratios namely, sine, cosine, tangent, cosecant, secant and cotangent. These are abbreviated as sin, cos, tan, csc, sec and cot. The angles will be present in any of the fourth quadrants. The sign of the trigonometric ratio will be based on the ASTC rule.
If an angle is multiple of \[{90^ \circ }\], then \[\sin \Leftrightarrow \cos \], \[\tan \Leftrightarrow \cot \] and \[\sec \Leftrightarrow \csc \]. If an angle is multiple of \[{180^ \circ }\], then \[\sin \Leftrightarrow \sin \], \[\tan \Leftrightarrow \tan \] and \[\sec \Leftrightarrow \sec \]. When the angle is multiple of \[{90^ \circ }\], then it will be converted into the co-ratios of trigonometry. This is called a trigonometric function for allied angles.
The other trigonometric ratios for allied angles is given below:
When the angle is a negative
\[\sin ( - \theta ) = - \sin \theta \\
\Rightarrow \cos ( - \theta ) = \cos \theta \\
\Rightarrow \tan ( - \theta ) = - \tan \theta \\
\Rightarrow \csc ( - \theta ) = - \csc \theta \\
\Rightarrow \sec ( - \theta ) = \sec \theta \\
\Rightarrow \cot ( - \theta ) = - \cot \theta \\ \]
When the angle is the sum of \[{90^ \circ }\]
\[\sin ({90^ \circ } + \theta ) = \cos \theta \\
\Rightarrow \cos ({90^ \circ } + \theta ) = - \sin \theta \\
\Rightarrow \tan ({90^ \circ } + \theta ) = - \cot \theta \\
\Rightarrow \csc ({90^ \circ } + \theta ) = \sec \theta \\
\Rightarrow \sec ({90^ \circ } + \theta ) = - \csc \theta \\
\Rightarrow \cot ({90^ \circ } + \theta ) = - \tan \theta \\ \]
When the angle is the difference of \[{90^ \circ }\]
\[\sin ({90^ \circ } - \theta ) = \cos \theta \\
\Rightarrow \cos ({90^ \circ } - \theta ) = \sin \theta \\
\Rightarrow \tan ({90^ \circ } - \theta ) = \cot \theta \\
\Rightarrow \csc ({90^ \circ } - \theta ) = \sec \theta \\
\Rightarrow \sec ({90^ \circ } - \theta ) = \csc \theta \\
\Rightarrow \cot ({90^ \circ } - \theta ) = \tan \theta \\ \]
When the angle is the sum of \[{180^ \circ }\]
\[\sin ({180^ \circ } + \theta ) = - \sin \theta \\
\Rightarrow \cos ({180^ \circ } + \theta ) = - \cos \theta \\
\Rightarrow \tan ({180^ \circ } + \theta ) = \tan \theta \\
\Rightarrow \csc ({180^ \circ } + \theta ) = - \csc \theta \\
\Rightarrow \sec ({180^ \circ } + \theta ) = - \sec \theta \\
\Rightarrow \cot ({180^ \circ } + \theta ) = \cot \theta \\ \]
When the angle is the difference of \[{180^ \circ }\]
\[\sin ({180^ \circ } - \theta ) = \sin \theta \\
\Rightarrow \cos ({180^ \circ } - \theta ) = - \cos \theta \\
\Rightarrow \tan ({180^ \circ } - \theta ) = - \tan \theta \\
\Rightarrow \csc ({180^ \circ } - \theta ) = \csc \theta \\
\Rightarrow \sec ({180^ \circ } - \theta ) = - \sec \theta \\
\Rightarrow \cot ({180^ \circ } - \theta ) = - \cot \theta \\ \]
When the angle is the sum of \[{360^ \circ }\]
\[\sin ({360^ \circ } + \theta ) = \sin \theta \\
\Rightarrow \cos ({360^ \circ } + \theta ) = \cos \theta \\
\Rightarrow \tan ({360^ \circ } + \theta ) = \tan \theta \\
\Rightarrow \csc ({360^ \circ } + \theta ) = \csc \theta \\
\Rightarrow \sec ({360^ \circ } + \theta ) = \sec \theta \\
\Rightarrow \cot ({360^ \circ } + \theta ) = \cot \theta \\ \]
Now we consider the given question and simplify it
\[\dfrac{{\cos ({{90}^ \circ } + \theta )\sec ( - \theta )\tan ({{180}^ \circ } - \theta )}}{{\sin ({{360}^ \circ } + \theta )\sec ({{180}^ \circ } + \theta )\cot ({{90}^ \circ } - \theta )}}\]
By the trigonometric function for allied angles the above inequality is written as
\[\dfrac{{\sin \theta \times \sec \theta \times - \tan \theta }}{{\sin \theta \times \sec \theta \times \tan \theta }}\]
This can be written as
\[ \Rightarrow \dfrac{{ - (\sin \theta \times \sec \theta \times \tan \theta )}}{{\sin \theta \times \sec \theta \times \tan \theta }}\]
On cancelling the terms in the numerator and denominator we have
\[ \Rightarrow - 1\]
Therefore \[\dfrac{{\cos ({{90}^ \circ } + \theta )\sec ( - \theta )\tan ({{180}^ \circ } - \theta )}}{{\sin ({{360}^ \circ } + \theta )\sec ({{180}^ \circ } + \theta )\cot ({{90}^ \circ } - \theta )}} = - 1\]
Hence the option C is the correct answer.
Note:The ASTC rule is defined as “All Sine Cosine Tangent”. In the first quadrant all, in a second quadrant sine, in a third quadrant cosine and in a fourth quadrant tangent respectively trigonometric ratios are positive. The Allied angles will be based on the ASTC rule.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

