
The expression $ \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} $ is
A. $ - 1 $
B. $ 0 $
C. $ 1 $
D.None of these
Answer
490.5k+ views
Hint: We can see that in the given question, we have a trigonometric function, as cosine or $ \cos $ is a trigonometric ratio. So we will apply the trigonometric identity to solve this question, such as
$ \cos \left( {\pi - \theta } \right) = - \cos \theta $ .
We will try to bring the first and second term similar to the other two terms by using this formula.
Complete step-by-step answer:
Here we have been given
$ \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} $ .
Let us take the first term i.e.
$ \cos \dfrac{{10\pi }}{{13}} $ .
We can write this also as
$ \cos \left( {\pi - \dfrac{{3\pi }}{{13}}} \right) $ , as on simplifying it gives us the original value i.e.
$ \cos \left( {\dfrac{{13\pi - 3\pi }}{{13}}} \right) = \cos \left( {\dfrac{{10\pi }}{{13}}} \right) $
Now we will take the second term
$ \cos \dfrac{{8\pi }}{{13}} $ .
Again we can write this also as
$ \cos \left( {\pi - \dfrac{{5\pi }}{{13}}} \right) $ , as on simplifying it gives us the original value i.e.
$ \cos \left( {\dfrac{{13\pi - 5\pi }}{{13}}} \right) = \cos \left( {\dfrac{{8\pi }}{{13}}} \right) $ .
Now by applying the trigonometric identity, we can write
$ \cos \left( {\pi - \dfrac{{3\pi }}{{13}}} \right) = - \cos \dfrac{{3\pi }}{{13}} $
Similarly , we can write
$ \cos \left( {\pi - \dfrac{{5\pi }}{{13}}} \right) = - \cos \dfrac{{5\pi }}{{13}} $
By putting the values back in the expression we can write :
$ - \cos \dfrac{{3\pi }}{{13}} + \left( { - \cos \dfrac{{5\pi }}{{13}}} \right) + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} $ .
By arranging the terms, we have :
$ \cos \dfrac{{3\pi }}{{13}} - \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} - \cos \dfrac{{5\pi }}{{13}} $ .
It gives us the value $ 0 $ .
Hence the correct option is (b) $ 0 $ .
So, the correct answer is “Option b”.
Note: We should note that we can also solve this question, with an alternate method. We will take the first and the term together and the second and fourth term together .
So we have
$ \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} $ .
We will use the formula
$ \cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) $
By applying the formula we can write :
$ 2\cos \left( {\dfrac{{\dfrac{{10\pi }}{{13}} + \dfrac{{3\pi }}{{13}}}}{2}} \right) + \cos \left( {\dfrac{{\dfrac{{8\pi }}{{13}} - \dfrac{{5\pi }}{{13}}}}{2}} \right) $ .
On simplifying the value we have:
$ 2\cos \left( {\dfrac{{\dfrac{{10\pi + 3\pi }}{{13}}}}{2}} \right) + \cos \left( {\dfrac{{\dfrac{{8\pi - 5\pi }}{{13}}}}{2}} \right) = 2\cos \left( {\dfrac{{\dfrac{{13\pi }}{{13}}}}{2}} \right) + \cos \left( {\dfrac{{\dfrac{{3\pi }}{{13}}}}{2}} \right) $
We can cancel the same factors from numerator and denominator and we have:
$ 2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{{3\pi }}{{26}}} \right) $
We know that the value of
$ \cos \left( {\dfrac{\pi }{2}} \right) = 0 $ , so anything multiplied by this will also give the result as zero.
Hence our answer is
$ 2 \times 0 \times \cos \left( {\dfrac{{3\pi }}{{26}}} \right) = 0 $ .
$ \cos \left( {\pi - \theta } \right) = - \cos \theta $ .
We will try to bring the first and second term similar to the other two terms by using this formula.
Complete step-by-step answer:
Here we have been given
$ \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} $ .
Let us take the first term i.e.
$ \cos \dfrac{{10\pi }}{{13}} $ .
We can write this also as
$ \cos \left( {\pi - \dfrac{{3\pi }}{{13}}} \right) $ , as on simplifying it gives us the original value i.e.
$ \cos \left( {\dfrac{{13\pi - 3\pi }}{{13}}} \right) = \cos \left( {\dfrac{{10\pi }}{{13}}} \right) $
Now we will take the second term
$ \cos \dfrac{{8\pi }}{{13}} $ .
Again we can write this also as
$ \cos \left( {\pi - \dfrac{{5\pi }}{{13}}} \right) $ , as on simplifying it gives us the original value i.e.
$ \cos \left( {\dfrac{{13\pi - 5\pi }}{{13}}} \right) = \cos \left( {\dfrac{{8\pi }}{{13}}} \right) $ .
Now by applying the trigonometric identity, we can write
$ \cos \left( {\pi - \dfrac{{3\pi }}{{13}}} \right) = - \cos \dfrac{{3\pi }}{{13}} $
Similarly , we can write
$ \cos \left( {\pi - \dfrac{{5\pi }}{{13}}} \right) = - \cos \dfrac{{5\pi }}{{13}} $
By putting the values back in the expression we can write :
$ - \cos \dfrac{{3\pi }}{{13}} + \left( { - \cos \dfrac{{5\pi }}{{13}}} \right) + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} $ .
By arranging the terms, we have :
$ \cos \dfrac{{3\pi }}{{13}} - \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} - \cos \dfrac{{5\pi }}{{13}} $ .
It gives us the value $ 0 $ .
Hence the correct option is (b) $ 0 $ .
So, the correct answer is “Option b”.
Note: We should note that we can also solve this question, with an alternate method. We will take the first and the term together and the second and fourth term together .
So we have
$ \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} $ .
We will use the formula
$ \cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) $
By applying the formula we can write :
$ 2\cos \left( {\dfrac{{\dfrac{{10\pi }}{{13}} + \dfrac{{3\pi }}{{13}}}}{2}} \right) + \cos \left( {\dfrac{{\dfrac{{8\pi }}{{13}} - \dfrac{{5\pi }}{{13}}}}{2}} \right) $ .
On simplifying the value we have:
$ 2\cos \left( {\dfrac{{\dfrac{{10\pi + 3\pi }}{{13}}}}{2}} \right) + \cos \left( {\dfrac{{\dfrac{{8\pi - 5\pi }}{{13}}}}{2}} \right) = 2\cos \left( {\dfrac{{\dfrac{{13\pi }}{{13}}}}{2}} \right) + \cos \left( {\dfrac{{\dfrac{{3\pi }}{{13}}}}{2}} \right) $
We can cancel the same factors from numerator and denominator and we have:
$ 2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{{3\pi }}{{26}}} \right) $
We know that the value of
$ \cos \left( {\dfrac{\pi }{2}} \right) = 0 $ , so anything multiplied by this will also give the result as zero.
Hence our answer is
$ 2 \times 0 \times \cos \left( {\dfrac{{3\pi }}{{26}}} \right) = 0 $ .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

