
The expression $ \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} $ is
A. $ - 1 $
B. $ 0 $
C. $ 1 $
D.None of these
Answer
503.7k+ views
Hint: We can see that in the given question, we have a trigonometric function, as cosine or $ \cos $ is a trigonometric ratio. So we will apply the trigonometric identity to solve this question, such as
$ \cos \left( {\pi - \theta } \right) = - \cos \theta $ .
We will try to bring the first and second term similar to the other two terms by using this formula.
Complete step-by-step answer:
Here we have been given
$ \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} $ .
Let us take the first term i.e.
$ \cos \dfrac{{10\pi }}{{13}} $ .
We can write this also as
$ \cos \left( {\pi - \dfrac{{3\pi }}{{13}}} \right) $ , as on simplifying it gives us the original value i.e.
$ \cos \left( {\dfrac{{13\pi - 3\pi }}{{13}}} \right) = \cos \left( {\dfrac{{10\pi }}{{13}}} \right) $
Now we will take the second term
$ \cos \dfrac{{8\pi }}{{13}} $ .
Again we can write this also as
$ \cos \left( {\pi - \dfrac{{5\pi }}{{13}}} \right) $ , as on simplifying it gives us the original value i.e.
$ \cos \left( {\dfrac{{13\pi - 5\pi }}{{13}}} \right) = \cos \left( {\dfrac{{8\pi }}{{13}}} \right) $ .
Now by applying the trigonometric identity, we can write
$ \cos \left( {\pi - \dfrac{{3\pi }}{{13}}} \right) = - \cos \dfrac{{3\pi }}{{13}} $
Similarly , we can write
$ \cos \left( {\pi - \dfrac{{5\pi }}{{13}}} \right) = - \cos \dfrac{{5\pi }}{{13}} $
By putting the values back in the expression we can write :
$ - \cos \dfrac{{3\pi }}{{13}} + \left( { - \cos \dfrac{{5\pi }}{{13}}} \right) + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} $ .
By arranging the terms, we have :
$ \cos \dfrac{{3\pi }}{{13}} - \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} - \cos \dfrac{{5\pi }}{{13}} $ .
It gives us the value $ 0 $ .
Hence the correct option is (b) $ 0 $ .
So, the correct answer is “Option b”.
Note: We should note that we can also solve this question, with an alternate method. We will take the first and the term together and the second and fourth term together .
So we have
$ \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} $ .
We will use the formula
$ \cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) $
By applying the formula we can write :
$ 2\cos \left( {\dfrac{{\dfrac{{10\pi }}{{13}} + \dfrac{{3\pi }}{{13}}}}{2}} \right) + \cos \left( {\dfrac{{\dfrac{{8\pi }}{{13}} - \dfrac{{5\pi }}{{13}}}}{2}} \right) $ .
On simplifying the value we have:
$ 2\cos \left( {\dfrac{{\dfrac{{10\pi + 3\pi }}{{13}}}}{2}} \right) + \cos \left( {\dfrac{{\dfrac{{8\pi - 5\pi }}{{13}}}}{2}} \right) = 2\cos \left( {\dfrac{{\dfrac{{13\pi }}{{13}}}}{2}} \right) + \cos \left( {\dfrac{{\dfrac{{3\pi }}{{13}}}}{2}} \right) $
We can cancel the same factors from numerator and denominator and we have:
$ 2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{{3\pi }}{{26}}} \right) $
We know that the value of
$ \cos \left( {\dfrac{\pi }{2}} \right) = 0 $ , so anything multiplied by this will also give the result as zero.
Hence our answer is
$ 2 \times 0 \times \cos \left( {\dfrac{{3\pi }}{{26}}} \right) = 0 $ .
$ \cos \left( {\pi - \theta } \right) = - \cos \theta $ .
We will try to bring the first and second term similar to the other two terms by using this formula.
Complete step-by-step answer:
Here we have been given
$ \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} $ .
Let us take the first term i.e.
$ \cos \dfrac{{10\pi }}{{13}} $ .
We can write this also as
$ \cos \left( {\pi - \dfrac{{3\pi }}{{13}}} \right) $ , as on simplifying it gives us the original value i.e.
$ \cos \left( {\dfrac{{13\pi - 3\pi }}{{13}}} \right) = \cos \left( {\dfrac{{10\pi }}{{13}}} \right) $
Now we will take the second term
$ \cos \dfrac{{8\pi }}{{13}} $ .
Again we can write this also as
$ \cos \left( {\pi - \dfrac{{5\pi }}{{13}}} \right) $ , as on simplifying it gives us the original value i.e.
$ \cos \left( {\dfrac{{13\pi - 5\pi }}{{13}}} \right) = \cos \left( {\dfrac{{8\pi }}{{13}}} \right) $ .
Now by applying the trigonometric identity, we can write
$ \cos \left( {\pi - \dfrac{{3\pi }}{{13}}} \right) = - \cos \dfrac{{3\pi }}{{13}} $
Similarly , we can write
$ \cos \left( {\pi - \dfrac{{5\pi }}{{13}}} \right) = - \cos \dfrac{{5\pi }}{{13}} $
By putting the values back in the expression we can write :
$ - \cos \dfrac{{3\pi }}{{13}} + \left( { - \cos \dfrac{{5\pi }}{{13}}} \right) + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} $ .
By arranging the terms, we have :
$ \cos \dfrac{{3\pi }}{{13}} - \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} - \cos \dfrac{{5\pi }}{{13}} $ .
It gives us the value $ 0 $ .
Hence the correct option is (b) $ 0 $ .
So, the correct answer is “Option b”.
Note: We should note that we can also solve this question, with an alternate method. We will take the first and the term together and the second and fourth term together .
So we have
$ \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} $ .
We will use the formula
$ \cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) $
By applying the formula we can write :
$ 2\cos \left( {\dfrac{{\dfrac{{10\pi }}{{13}} + \dfrac{{3\pi }}{{13}}}}{2}} \right) + \cos \left( {\dfrac{{\dfrac{{8\pi }}{{13}} - \dfrac{{5\pi }}{{13}}}}{2}} \right) $ .
On simplifying the value we have:
$ 2\cos \left( {\dfrac{{\dfrac{{10\pi + 3\pi }}{{13}}}}{2}} \right) + \cos \left( {\dfrac{{\dfrac{{8\pi - 5\pi }}{{13}}}}{2}} \right) = 2\cos \left( {\dfrac{{\dfrac{{13\pi }}{{13}}}}{2}} \right) + \cos \left( {\dfrac{{\dfrac{{3\pi }}{{13}}}}{2}} \right) $
We can cancel the same factors from numerator and denominator and we have:
$ 2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{{3\pi }}{{26}}} \right) $
We know that the value of
$ \cos \left( {\dfrac{\pi }{2}} \right) = 0 $ , so anything multiplied by this will also give the result as zero.
Hence our answer is
$ 2 \times 0 \times \cos \left( {\dfrac{{3\pi }}{{26}}} \right) = 0 $ .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

