
The equations $x=a\cos \theta +b\sin \theta \text{ and }y=a\sin \theta -b\cos \theta $ represent
(a) Circle
(b) A parabola
(c) A line
(d) An ellipse
Answer
617.1k+ views
Hint: Squaring both terms and then adding them then apply a trigonometric formula.
Complete step-by-step answer:
Given equations are:
(1)$x=a\cos \theta +b\sin \theta $
Squaring both sides; it will give
${{x}^{2}}={{(a\cos \theta +b\sin \theta )}^{2}}$
\[{{x}^{2}}={{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta +2ab\cos \theta .\sin \theta \]
(2) $y=a\sin \theta -b\cos \theta $
Squaring both sides; it will give
${{y}^{2}}={{(a\sin \theta -b\cos \theta )}^{2}}$
${{y}^{2}}={{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta -2ab\cos \theta .\sin \theta $
Now adding $\left( {{x}^{2}}+{{y}^{2}} \right)$, we get
\[\begin{align}
& \text{ }{{x}^{2}}={{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta +{2ab\cos \theta .\sin \theta } \\
& \underline{(+)\text{ }{{y}^{2}}={{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta -{2ab\sin \theta .\cos \theta }} \\
\end{align}\]
$\Rightarrow {{x}^{2}}+{{y}^{2}}={{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta +{{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta $
Rearranging the term, we get
$\Rightarrow {{x}^{2}}+{{y}^{2}}={{a}^{2}}{{\cos }^{2}}\theta +{{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta $
Taking out the common term, we get
$\Rightarrow {{x}^{2}}+{{y}^{2}}={{a}^{2}}({{\cos }^{2}}\theta +{{\sin }^{2}}\theta )+{{b}^{2}}({{\cos }^{2}}\theta +{{\sin }^{2}}\theta )$
Now we know, $\left[ {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \right]$, so the above expression can be written as,
$\Rightarrow {{x}^{2}}+{{y}^{2}}={{a}^{2}}\times 1+{{b}^{2}}\times 1$
$\Rightarrow {{x}^{2}}+{{y}^{2}}={{a}^{2}}+{{b}^{2}}$
This represents an equation of circle with origin as centre and $(\sqrt{{{a}^{2}}+{{b}^{2}}})$ as the radius.
Hence the correct answer is option (a).
Answer is option (a)
Note: Whenever this type of question is given, that involves sine and cosine functions, squaring is must and then add the result. This is the easiest way to solve it.
Suppose that we consider the operation $\dfrac{x}{y}$ , we get a different result.
Complete step-by-step answer:
Given equations are:
(1)$x=a\cos \theta +b\sin \theta $
Squaring both sides; it will give
${{x}^{2}}={{(a\cos \theta +b\sin \theta )}^{2}}$
\[{{x}^{2}}={{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta +2ab\cos \theta .\sin \theta \]
(2) $y=a\sin \theta -b\cos \theta $
Squaring both sides; it will give
${{y}^{2}}={{(a\sin \theta -b\cos \theta )}^{2}}$
${{y}^{2}}={{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta -2ab\cos \theta .\sin \theta $
Now adding $\left( {{x}^{2}}+{{y}^{2}} \right)$, we get
\[\begin{align}
& \text{ }{{x}^{2}}={{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta +{2ab\cos \theta .\sin \theta } \\
& \underline{(+)\text{ }{{y}^{2}}={{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta -{2ab\sin \theta .\cos \theta }} \\
\end{align}\]
$\Rightarrow {{x}^{2}}+{{y}^{2}}={{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta +{{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta $
Rearranging the term, we get
$\Rightarrow {{x}^{2}}+{{y}^{2}}={{a}^{2}}{{\cos }^{2}}\theta +{{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta $
Taking out the common term, we get
$\Rightarrow {{x}^{2}}+{{y}^{2}}={{a}^{2}}({{\cos }^{2}}\theta +{{\sin }^{2}}\theta )+{{b}^{2}}({{\cos }^{2}}\theta +{{\sin }^{2}}\theta )$
Now we know, $\left[ {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \right]$, so the above expression can be written as,
$\Rightarrow {{x}^{2}}+{{y}^{2}}={{a}^{2}}\times 1+{{b}^{2}}\times 1$
$\Rightarrow {{x}^{2}}+{{y}^{2}}={{a}^{2}}+{{b}^{2}}$
This represents an equation of circle with origin as centre and $(\sqrt{{{a}^{2}}+{{b}^{2}}})$ as the radius.
Hence the correct answer is option (a).
Answer is option (a)
Note: Whenever this type of question is given, that involves sine and cosine functions, squaring is must and then add the result. This is the easiest way to solve it.
Suppose that we consider the operation $\dfrac{x}{y}$ , we get a different result.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

