
The ends of the diameter are $ \left( 6,5 \right) $ and $ \left( -12,-5 \right) $ . How do you find the equation of this circle?
Answer
563.1k+ views
Hint: We find the coordinates of the centre from end points of the diameter of $ \left( 6,5 \right) $ and $ \left( -12,-5 \right) $ . The distance between the centre and one end point of the diameter gives the length of the radius. From the general equation of circle \[{{\left( x-\alpha \right)}^{2}}+{{\left( y-\beta \right)}^{2}}={{r}^{2}}\], we find the required equation.
Complete step by step answer:
We know that the middle point of the line of the diameter is the centre of a circle.
We have the end points of the diameter as $ \left( 6,5 \right) $ and $ \left( -12,-5 \right) $ .
The middle point of the points $ \left( 6,5 \right) $ and $ \left( -12,-5 \right) $ will be the centre.
We know that for points $ \left( a,b \right) $ and $ \left( c,d \right) $ the middle point will be $ \left( \dfrac{a+c}{2},\dfrac{b+d}{2} \right) $ .
So, the centre of our required circle is $ \left( \dfrac{6-12}{2},\dfrac{5-5}{2} \right)\equiv \left( -3,0 \right) $ .
We also know that the distance from the centre to one endpoint of the diameter is the length of the radius.
Therefore, the distance between $ \left( -3,0 \right) $ and $ \left( 6,5 \right) $ will be the radius’s length. Let’s assume the length is r.
For points $ \left( a,b \right) $ and $ \left( c,d \right) $ , the distance formula is \[\sqrt{{{\left( c-a \right)}^{2}}+{{\left( d-b \right)}^{2}}}\].
For points $ \left( -3,0 \right) $ and $ \left( 6,5 \right) $ , the distance is \[\sqrt{{{\left( 6+3 \right)}^{2}}+{{\left( 5-0 \right)}^{2}}}=\sqrt{81+25}=\sqrt{106}\].
This means \[r=\sqrt{106}\].
Now for a centre at $ \left( \alpha ,\beta \right) $ and the radius r the equation of a circle is \[{{\left( x-\alpha \right)}^{2}}+{{\left( y-\beta \right)}^{2}}={{r}^{2}}\].
Our required circle with centre at $ \left( -3,0 \right) $ and the radius \[r=\sqrt{106}\] will be
\[\begin{align}
& {{\left( x+3 \right)}^{2}}+{{\left( y \right)}^{2}}={{\left( \sqrt{106} \right)}^{2}} \\
& \Rightarrow {{x}^{2}}+6x+{{y}^{2}}=97 \\
\end{align}\]
The equation of the circle is \[{{x}^{2}}+6x+{{y}^{2}}=97\].
Note:
We also can use the direct formula of finding circle’s equation from end points of the diameter $ \left( a,b \right) $ and $ \left( c,d \right) $ where the equation is $ \left( x-a \right)\left( x-c \right)+\left( y-b \right)\left( y-d \right)=0 $ .
For our given points $ \left( 6,5 \right) $ and $ \left( -12,-5 \right) $ , the circle’s equation is
$ \begin{align}
& \left( x-6 \right)\left( x+12 \right)+\left( y-5 \right)\left( y+5 \right)=0 \\
& \Rightarrow {{x}^{2}}+6x-72+{{y}^{2}}-25=0 \\
& \Rightarrow {{x}^{2}}+6x+{{y}^{2}}=97 \\
\end{align} $
Complete step by step answer:
We know that the middle point of the line of the diameter is the centre of a circle.
We have the end points of the diameter as $ \left( 6,5 \right) $ and $ \left( -12,-5 \right) $ .
The middle point of the points $ \left( 6,5 \right) $ and $ \left( -12,-5 \right) $ will be the centre.
We know that for points $ \left( a,b \right) $ and $ \left( c,d \right) $ the middle point will be $ \left( \dfrac{a+c}{2},\dfrac{b+d}{2} \right) $ .
So, the centre of our required circle is $ \left( \dfrac{6-12}{2},\dfrac{5-5}{2} \right)\equiv \left( -3,0 \right) $ .
We also know that the distance from the centre to one endpoint of the diameter is the length of the radius.
Therefore, the distance between $ \left( -3,0 \right) $ and $ \left( 6,5 \right) $ will be the radius’s length. Let’s assume the length is r.
For points $ \left( a,b \right) $ and $ \left( c,d \right) $ , the distance formula is \[\sqrt{{{\left( c-a \right)}^{2}}+{{\left( d-b \right)}^{2}}}\].
For points $ \left( -3,0 \right) $ and $ \left( 6,5 \right) $ , the distance is \[\sqrt{{{\left( 6+3 \right)}^{2}}+{{\left( 5-0 \right)}^{2}}}=\sqrt{81+25}=\sqrt{106}\].
This means \[r=\sqrt{106}\].
Now for a centre at $ \left( \alpha ,\beta \right) $ and the radius r the equation of a circle is \[{{\left( x-\alpha \right)}^{2}}+{{\left( y-\beta \right)}^{2}}={{r}^{2}}\].
Our required circle with centre at $ \left( -3,0 \right) $ and the radius \[r=\sqrt{106}\] will be
\[\begin{align}
& {{\left( x+3 \right)}^{2}}+{{\left( y \right)}^{2}}={{\left( \sqrt{106} \right)}^{2}} \\
& \Rightarrow {{x}^{2}}+6x+{{y}^{2}}=97 \\
\end{align}\]
The equation of the circle is \[{{x}^{2}}+6x+{{y}^{2}}=97\].
Note:
We also can use the direct formula of finding circle’s equation from end points of the diameter $ \left( a,b \right) $ and $ \left( c,d \right) $ where the equation is $ \left( x-a \right)\left( x-c \right)+\left( y-b \right)\left( y-d \right)=0 $ .
For our given points $ \left( 6,5 \right) $ and $ \left( -12,-5 \right) $ , the circle’s equation is
$ \begin{align}
& \left( x-6 \right)\left( x+12 \right)+\left( y-5 \right)\left( y+5 \right)=0 \\
& \Rightarrow {{x}^{2}}+6x-72+{{y}^{2}}-25=0 \\
& \Rightarrow {{x}^{2}}+6x+{{y}^{2}}=97 \\
\end{align} $
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

