
The domain of ${\sin ^{ - 1}}\left( {\ln x} \right)$ is
A. $\left[ {\dfrac{1}{e},e} \right]$
B. $\left( {\dfrac{1}{e},2} \right]$
C. $\left( {0,\infty } \right)$
D. $\left( { - \infty ,0} \right]$
Answer
597.9k+ views
Hint: We first determine the range of $\sin x$, hence finding the domain of ${\sin ^{ - 1}}\left( x \right)$. Next, find the values of $x$ which satisfy the domain of ${\sin ^{ - 1}}\left( x \right)$. From those values of $x$, find the values that will satisfy the domain of $\ln x$, as $x > 0$ for $\ln x$.
Complete step by step answer:
First of all, determine the range of $\sin x$.
As $\sin x$ can take values from $ - 1$ to 1 only, therefore, the range of $\sin x$ is $ - 1 \leqslant x \leqslant 1$.
Therefore, the domain of ${\sin ^{ - 1}}\left( x \right)$ is $ - 1 \leqslant x \leqslant 1$.
In this question, we are given ${\sin ^{ - 1}}\left( {\ln x} \right)$, then the value of $\ln x$ will be from $ - 1$ to 1, that implies,
$ - 1 \leqslant \ln x \leqslant 1$
Solve for $x$ in the above inequality.
As we know, \[\ln {a^m} = b \Rightarrow {e^b} = a\]
Therefore, $ - 1 \leqslant \ln x \leqslant 1$ can be written as, ${e^{ - 1}} \leqslant x \leqslant e$ which is equivalent to $\dfrac{1}{e} \leqslant x \leqslant e$
Now, eliminate those values of \[x\] which are negative because $\ln x$is only defined for values $x > 0$.
In $\dfrac{1}{e} \leqslant x \leqslant e$, all values of \[x\] are positive. Hence, the domain of ${\sin ^{ - 1}}\left( {\ln x} \right)$ is $\dfrac{1}{e} \leqslant x \leqslant e$ which can be written as $\left[ {\dfrac{1}{e},e} \right]$
Therefore, option A is correct.
Note: The domain of ${\sin ^{ - 1}}\left( x \right)$ is $\left[ { - 1,1} \right]$ and the range of ${\sin ^{ - 1}}\left( x \right)$ is $\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$. The domain of $\ln x$is $\left( {0,\infty } \right)$ and the range of $\ln x$ is $\left( { - \infty ,\infty } \right)$. Therefore., after calculating the values of $\ln x$, take only those values of $x$ which belongs to the domain of $\ln x$.
Complete step by step answer:
First of all, determine the range of $\sin x$.
As $\sin x$ can take values from $ - 1$ to 1 only, therefore, the range of $\sin x$ is $ - 1 \leqslant x \leqslant 1$.
Therefore, the domain of ${\sin ^{ - 1}}\left( x \right)$ is $ - 1 \leqslant x \leqslant 1$.
In this question, we are given ${\sin ^{ - 1}}\left( {\ln x} \right)$, then the value of $\ln x$ will be from $ - 1$ to 1, that implies,
$ - 1 \leqslant \ln x \leqslant 1$
Solve for $x$ in the above inequality.
As we know, \[\ln {a^m} = b \Rightarrow {e^b} = a\]
Therefore, $ - 1 \leqslant \ln x \leqslant 1$ can be written as, ${e^{ - 1}} \leqslant x \leqslant e$ which is equivalent to $\dfrac{1}{e} \leqslant x \leqslant e$
Now, eliminate those values of \[x\] which are negative because $\ln x$is only defined for values $x > 0$.
In $\dfrac{1}{e} \leqslant x \leqslant e$, all values of \[x\] are positive. Hence, the domain of ${\sin ^{ - 1}}\left( {\ln x} \right)$ is $\dfrac{1}{e} \leqslant x \leqslant e$ which can be written as $\left[ {\dfrac{1}{e},e} \right]$
Therefore, option A is correct.
Note: The domain of ${\sin ^{ - 1}}\left( x \right)$ is $\left[ { - 1,1} \right]$ and the range of ${\sin ^{ - 1}}\left( x \right)$ is $\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$. The domain of $\ln x$is $\left( {0,\infty } \right)$ and the range of $\ln x$ is $\left( { - \infty ,\infty } \right)$. Therefore., after calculating the values of $\ln x$, take only those values of $x$ which belongs to the domain of $\ln x$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

