
The dimensions of Wien’s constant are
A. \[\left[ M{{L}^{0}}TK \right]\]
B. \[\left[ {{M}^{0}}L{{T}^{0}}K \right]\]
C. \[\left[ {{M}^{0}}{{L}^{0}}TK \right]\]
D. \[\left[ MLTK \right]\]
Answer
590.1k+ views
Hint: Wien’s displacement law has been used to describe the energy radiation of a black body. According to the Wien’s displacement law, \[{{\lambda }_{\max }}=\dfrac{b}{T}\], where \[b\] is the Wien’s constant. From this equation we can find out the dimension of Wien’s constant.
Complete step-by-step answer:
Wien’s displacement constant can be found from the Wien’s displacement law. It states that, spectral radiance of black-body radiation per unit wavelength is inversely proportional to the temperature.
It can be written as,
\[{{\lambda }_{\max }}=\dfrac{b}{T}\], where \[b\] is the Wien’s constant and \[T\] is the temperature.
\[b={{\lambda }_{\max }}T\]
The dimensional formula of wavelength can be written as
\[{{\lambda }_{\max }}\Rightarrow \left[ L \right]\]
The dimensional formula of temperature can be written as
\[T\Rightarrow \left[ K \right]\]
So, the dimensional formula of Wien’s constant is
\[b\Rightarrow \left[ {{M}^{0}}L{{T}^{0}}K \right]\]
So, the correct option is B.
Additional information:
Wien’s displacement law is actually related to the black body. A good approximation of blackbody is a small hole leading to the inside of a hollow object and that can act as a perfect absorber. The nature of the radiation leaving the cavity through the hole depends only on temperature only. Intensity of blackbody radiation increases with temperature. So, the amount of radiation also increases. According to Wien’s displacement law, the peak wavelength decreases with increasing temperature.
For each temperature, there is a wavelength, at which energy radiated is maximum. Increase in temperature increases the energy radiated but decreases the peak wavelength. The area under the curve for a particular temperature gives the total energy emitted by the blackbody. Stefan’s law also used to describe the radiated energy relation with the temperature. It states that the energy radiated by a black body per second per unit area is directly proportional to the fourth power of absolute temperature.
Note: \[{{\lambda }_{\max }}\] is representing the peak wavelength at a particular temperature. Wavelength is a distance between the identical points of adjacent cycles of a wave. So, the dimensional formula of wavelength is L. Dimensional formula of temperature is represented by K. Whereas, the T has been used for the time. Candidates do not make any mistakes by interchanging these quantities.
Complete step-by-step answer:
Wien’s displacement constant can be found from the Wien’s displacement law. It states that, spectral radiance of black-body radiation per unit wavelength is inversely proportional to the temperature.
It can be written as,
\[{{\lambda }_{\max }}=\dfrac{b}{T}\], where \[b\] is the Wien’s constant and \[T\] is the temperature.
\[b={{\lambda }_{\max }}T\]
The dimensional formula of wavelength can be written as
\[{{\lambda }_{\max }}\Rightarrow \left[ L \right]\]
The dimensional formula of temperature can be written as
\[T\Rightarrow \left[ K \right]\]
So, the dimensional formula of Wien’s constant is
\[b\Rightarrow \left[ {{M}^{0}}L{{T}^{0}}K \right]\]
So, the correct option is B.
Additional information:
Wien’s displacement law is actually related to the black body. A good approximation of blackbody is a small hole leading to the inside of a hollow object and that can act as a perfect absorber. The nature of the radiation leaving the cavity through the hole depends only on temperature only. Intensity of blackbody radiation increases with temperature. So, the amount of radiation also increases. According to Wien’s displacement law, the peak wavelength decreases with increasing temperature.
For each temperature, there is a wavelength, at which energy radiated is maximum. Increase in temperature increases the energy radiated but decreases the peak wavelength. The area under the curve for a particular temperature gives the total energy emitted by the blackbody. Stefan’s law also used to describe the radiated energy relation with the temperature. It states that the energy radiated by a black body per second per unit area is directly proportional to the fourth power of absolute temperature.
Note: \[{{\lambda }_{\max }}\] is representing the peak wavelength at a particular temperature. Wavelength is a distance between the identical points of adjacent cycles of a wave. So, the dimensional formula of wavelength is L. Dimensional formula of temperature is represented by K. Whereas, the T has been used for the time. Candidates do not make any mistakes by interchanging these quantities.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

