Answer
Verified
454.5k+ views
Hint: We know that heat capacity is defined as the heat required to raise the temperature of a substance by 1 unit of temperature. Now, to reduce a quantity to its dimensional form means expressing the units of the quantity in terms of just powers of mass, length, time and temperature. In other words, reduce the units of heat capacity from the SI units to the base units by taking the heat energy and the change in temperature in terms of the base units. Following this, assign the powers of the base units to the fundamental quantities of the dimensional formula to arrive at the appropriate dimensions for heat capacity.
Formula used:
Heat capacity $C_{H} = \dfrac{Q}{\Delta T}$
Complete answer:
Let us begin by establishing an understanding of heat capacity.
Heat capacity, also known as thermal capacity is a measurable physical quantity that characterizes the amount of heat required to raise the temperature of the substance by $1^{\circ}C$, and is given as the ratio of the amount of heat energy Q transferred to a substance to the resulting increase in the temperature ($\Delta T$) of the substance, i.e.,
$C_{H} = \dfrac{Q}{\Delta T}$ and is usually measured in $J^{\circ}C^{-1}$
Now, a dimensional formula for any physical quantity looks like $\left[ M^x L^y T^z K^a\right]$, where M, L, T and K, are the mass, length, time and temperature respectively, and x, y, z and a are any integers representing dimensions.
Let us now try to dimensionally analyse what our definition of heat capacity looks like.
For this, let us deconstruct the heat capacity expression to its dimensional notation by evaluating the dimensions of heat transfer and temperature.
The heat energy Q transferred is measured in joules (J), which in base units is expressed as $kg.m^2.s^{-2}$
Therefore, the dimensional formula for Q will be $\left[ML^2T^{-2}\right]$
The change in temperature $\Delta T$ is measured in kelvin (K), therefore, the dimensional formula for $T$ will be $\left[K\right]$
Putting this all together is the expression for heat capacity, we can get its dimensional formula as:
$\left[C_{H}\right] = \dfrac{\left[Q\right]}{\left[\Delta T\right]} = \dfrac{\left[ML^2T^{-2}\right]}{ \left[K\right]} = \left[ML^2T^{-2}K^{-1}\right]$
So, the correct answer is “Option B”.
Note:
The dimensional formula allows us to express the unit of a physical quantity in terms of the fundamental quantities mass (M), length (L), time (T) and temperature (K).
However, while reducing the dimensional formula from the base units be careful in assigning the right power to the right fundamental quantity each time as any discrepancy in the dimension will result in an anomalous nature of the quantities involved.
Formula used:
Heat capacity $C_{H} = \dfrac{Q}{\Delta T}$
Complete answer:
Let us begin by establishing an understanding of heat capacity.
Heat capacity, also known as thermal capacity is a measurable physical quantity that characterizes the amount of heat required to raise the temperature of the substance by $1^{\circ}C$, and is given as the ratio of the amount of heat energy Q transferred to a substance to the resulting increase in the temperature ($\Delta T$) of the substance, i.e.,
$C_{H} = \dfrac{Q}{\Delta T}$ and is usually measured in $J^{\circ}C^{-1}$
Now, a dimensional formula for any physical quantity looks like $\left[ M^x L^y T^z K^a\right]$, where M, L, T and K, are the mass, length, time and temperature respectively, and x, y, z and a are any integers representing dimensions.
Let us now try to dimensionally analyse what our definition of heat capacity looks like.
For this, let us deconstruct the heat capacity expression to its dimensional notation by evaluating the dimensions of heat transfer and temperature.
The heat energy Q transferred is measured in joules (J), which in base units is expressed as $kg.m^2.s^{-2}$
Therefore, the dimensional formula for Q will be $\left[ML^2T^{-2}\right]$
The change in temperature $\Delta T$ is measured in kelvin (K), therefore, the dimensional formula for $T$ will be $\left[K\right]$
Putting this all together is the expression for heat capacity, we can get its dimensional formula as:
$\left[C_{H}\right] = \dfrac{\left[Q\right]}{\left[\Delta T\right]} = \dfrac{\left[ML^2T^{-2}\right]}{ \left[K\right]} = \left[ML^2T^{-2}K^{-1}\right]$
So, the correct answer is “Option B”.
Note:
The dimensional formula allows us to express the unit of a physical quantity in terms of the fundamental quantities mass (M), length (L), time (T) and temperature (K).
However, while reducing the dimensional formula from the base units be careful in assigning the right power to the right fundamental quantity each time as any discrepancy in the dimension will result in an anomalous nature of the quantities involved.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
What is pollution? How many types of pollution? Define it
Discuss the main reasons for poverty in India