
The dimension of permittivity of vacuum
${\text{A}}{\text{. }}\left[ {{M^{ - 2}}{L^{ - 3}}{T^4}{A^2}} \right]$
${\text{B}}{\text{. }}\left[ {{M^{ - 1}}{L^{ - 3}}{T^4}{A^3}} \right]$
${\text{C}}{\text{. }}\left[ {{M^{ - 1}}{L^{ - 3}}{T^4}{A^2}} \right]$
${\text{D}}{\text{. }}\left[ {{M^{ - 1}}{L^{ - 5}}{T^4}{A^2}} \right]$
Answer
596.1k+ views
Hint – The permittivity of the vacuum is given by the formula ${F_e} = \dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{{{q^2}}}{{{r^2}}}$ , which implies ${ \in _ \circ } = \dfrac{{{q^2}}}{{({F_e}) \times {{(r)}^2}}}$ , then put the dimension of the force, charge and distance to find the dimension of permittivity.
Formula used - ${F_e} = \dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{{{q^2}}}{{{r^2}}}$.
Complete step-by-step solution -
We have been asked to find the dimension of permittivity.
So, we know the formula, ${F_e} = \dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{{{q^2}}}{{{r^2}}}$
Therefore, the permittivity will be, ${ \in _ \circ } = \dfrac{{{q^2}}}{{({F_e}) \times {{(r)}^2}}}$
Here, ${ \in _ \circ }$ is the permittivity of the vacuum, ${F_e}$ is the force and r is the distance.
Now, we can write charge as $q = i \times t$ , here i is the current and t is the time.
So, the dimension of q is-
$[q] = [AT]$
Also, force is mass * acceleration.
So, dimension of force is ${F_e} = ML{T^{ - 2}}$ , as dimension of mass is M and acceleration is $L{T^{ - 2}}$
Also dimension of distance is $[r] = L$
So, keeping all these values, we get-
${ \in _ \circ } = \dfrac{{{{[AT]}^2}}}{{[ML{T^{ - 2}}]{{[L]}^2}}} = \dfrac{{{{[AT]}^2}}}{{[M{L^3}{T^{ - 2}}]}} = [{M^{ - 1}}{L^{ - 3}}{T^4}{A^2}]$
Therefore, the dimension of permittivity is $[{M^{ - 1}}{L^{ - 3}}{T^4}{A^2}]$
Hence, the correct option is C.
Note – Whenever such types of questions appear then first write the formula to find the permittivity of vacuum and then write the dimensions of the terms in the formula, as mentioned in the solution to obtain the dimensional formula of permittivity of vacuum.
Formula used - ${F_e} = \dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{{{q^2}}}{{{r^2}}}$.
Complete step-by-step solution -
We have been asked to find the dimension of permittivity.
So, we know the formula, ${F_e} = \dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{{{q^2}}}{{{r^2}}}$
Therefore, the permittivity will be, ${ \in _ \circ } = \dfrac{{{q^2}}}{{({F_e}) \times {{(r)}^2}}}$
Here, ${ \in _ \circ }$ is the permittivity of the vacuum, ${F_e}$ is the force and r is the distance.
Now, we can write charge as $q = i \times t$ , here i is the current and t is the time.
So, the dimension of q is-
$[q] = [AT]$
Also, force is mass * acceleration.
So, dimension of force is ${F_e} = ML{T^{ - 2}}$ , as dimension of mass is M and acceleration is $L{T^{ - 2}}$
Also dimension of distance is $[r] = L$
So, keeping all these values, we get-
${ \in _ \circ } = \dfrac{{{{[AT]}^2}}}{{[ML{T^{ - 2}}]{{[L]}^2}}} = \dfrac{{{{[AT]}^2}}}{{[M{L^3}{T^{ - 2}}]}} = [{M^{ - 1}}{L^{ - 3}}{T^4}{A^2}]$
Therefore, the dimension of permittivity is $[{M^{ - 1}}{L^{ - 3}}{T^4}{A^2}]$
Hence, the correct option is C.
Note – Whenever such types of questions appear then first write the formula to find the permittivity of vacuum and then write the dimensions of the terms in the formula, as mentioned in the solution to obtain the dimensional formula of permittivity of vacuum.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

