
The difference between the sides at the right angled triangle is 14 cm. The area of the triangle is 120 ${cm}^{2}$. Calculate the perimeter of the triangle.
Answer
570.6k+ views
Hint: In the right angled triangle we have a hypotenuse, a perpendicular and a base. We can use Pythagoras theorem in right angled triangle:
${Hypotenuse}^2 ={Base}^2+ {Perpendicular}^2$
Area of a right angled triangle is given as: (½)x Base x Perpendicular
Perimeter of any triangle is given as: Sum of all the three sides.
Complete step-by-step answer:
Let ABC is a right angled triangle right angled at A.
Let the two sides AB=x cm and AC=y cm.
According to the question, the difference between the sides is 14 cm.
\[ \Rightarrow (x - y) \Rightarrow x = \left( {y + 14} \right)cm\], where (x > y).
Area of triangle =120(given)
\[ \Rightarrow \dfrac{1}{2} \times AB \times AC = 120\]
\[ \Rightarrow x \times y = 240\]
\[ \Rightarrow y \times (y + 14) = 240.....(\because y = x + 14)\]
\[ \Rightarrow {y^2} + 14y - 240 = 0\]
\[ \Rightarrow {y^2} + 24y - 10y - 240 = 0\]
\[ \Rightarrow y(y + 24) - 10(y + 24) = 0\]
\[ \Rightarrow (y + 24)(y - 10) = 0\]
\[ \Rightarrow y = 10;y = - 24\]
Neglecting \[y = - 24\]as sides cannot be negative.
One side of the right angled triangle = 10 cm.
Other side of the right angled triangle = \[y = 10 + 14 = 24\]cm
Now, for the perimeter of the triangle we must know the length of the third side.
Using Pythagoras theorem in right angle triangle ABC;
\[ \Rightarrow {(AC)^2} = {(x)^2} + {(y)^2}\]
\[ \Rightarrow {(AC)^2} = {(24)^2} + {(10)^2}\]
\[ \Rightarrow {(AC)^2} = 576 + 100\]
\[ \Rightarrow {(AC)^2} = 676\]
\[ \Rightarrow AC = 26\]cm.
Required perimeter is the sum of all sides of the triangle.
\[ \Rightarrow 24 + 10 + 26\]
\[ \Rightarrow 60\]cm.
Note: In this question we have already given that there is a difference of 14 cm between two sides which means that the given triangle will be either isosceles or scalene triangle.
An isosceles triangle has both two equal sides and two equal angles.
A scalene triangle has no sides equal.
An equilateral triangle has all three sides equal and hence, all angles equal to 60 degree.
${Hypotenuse}^2 ={Base}^2+ {Perpendicular}^2$
Area of a right angled triangle is given as: (½)x Base x Perpendicular
Perimeter of any triangle is given as: Sum of all the three sides.
Complete step-by-step answer:
Let ABC is a right angled triangle right angled at A.
Let the two sides AB=x cm and AC=y cm.
According to the question, the difference between the sides is 14 cm.
\[ \Rightarrow (x - y) \Rightarrow x = \left( {y + 14} \right)cm\], where (x > y).
Area of triangle =120(given)
\[ \Rightarrow \dfrac{1}{2} \times AB \times AC = 120\]
\[ \Rightarrow x \times y = 240\]
\[ \Rightarrow y \times (y + 14) = 240.....(\because y = x + 14)\]
\[ \Rightarrow {y^2} + 14y - 240 = 0\]
\[ \Rightarrow {y^2} + 24y - 10y - 240 = 0\]
\[ \Rightarrow y(y + 24) - 10(y + 24) = 0\]
\[ \Rightarrow (y + 24)(y - 10) = 0\]
\[ \Rightarrow y = 10;y = - 24\]
Neglecting \[y = - 24\]as sides cannot be negative.
One side of the right angled triangle = 10 cm.
Other side of the right angled triangle = \[y = 10 + 14 = 24\]cm
Now, for the perimeter of the triangle we must know the length of the third side.
Using Pythagoras theorem in right angle triangle ABC;
\[ \Rightarrow {(AC)^2} = {(x)^2} + {(y)^2}\]
\[ \Rightarrow {(AC)^2} = {(24)^2} + {(10)^2}\]
\[ \Rightarrow {(AC)^2} = 576 + 100\]
\[ \Rightarrow {(AC)^2} = 676\]
\[ \Rightarrow AC = 26\]cm.
Required perimeter is the sum of all sides of the triangle.
\[ \Rightarrow 24 + 10 + 26\]
\[ \Rightarrow 60\]cm.
Note: In this question we have already given that there is a difference of 14 cm between two sides which means that the given triangle will be either isosceles or scalene triangle.
An isosceles triangle has both two equal sides and two equal angles.
A scalene triangle has no sides equal.
An equilateral triangle has all three sides equal and hence, all angles equal to 60 degree.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

