
The diameter of an iron sphere is 18 cm. The sphere is melted and is drawn into a long wire of uniform cross section. If the length of the wire is 108 cm, find its diameter.
Answer
564.6k+ views
Hint: The volume of the sphere and the long wire (cylinder) are equal. The volume of a sphere is given as $ {{V}_{S}}=\dfrac{4}{3}\pi {{r}^{3}} $ , where r is the radius of the sphere.
The volume of a cylinder is given as $ {{V}_{C}}=\pi {{r}^{2}}l $ , where r is the radius of the cylinder and l is its length (or height).
Formula used:
$ {{V}_{S}}=\dfrac{4}{3}\pi {{r}^{3}} $
$ r=\dfrac{d}{2} $
$ {{V}_{C}}=\pi {{r}^{2}}l $
Complete step-by-step answer:
It is given that an iron sphere is melted and is converted into a long wire of uniform cross section. We are supposed to find the diameter of the wire.
When we say that the melted iron is made into a long wire of uniform cross section, the shape of the wire is a simple cylinder.
When the iron sphere is converted into a cylinder, though its shape and size changes but its volume will remain the same. This means that the volume of the sphere and the long wire (cylinder) are equal.
The volume of a sphere is given as $ {{V}_{S}}=\dfrac{4}{3}\pi {{r}^{3}} $ …. (i),
where r is the radius of the sphere.
It is given that the diameter of the sphere is 18 cm. The relation between radius (r) and diameter (d) is $ r=\dfrac{d}{2} $
$ \Rightarrow r=\dfrac{18}{2}=9\;cm $ .
Substitute the value of r in (i).
$ \Rightarrow {{V}_{S}}=\dfrac{4}{3}\pi {{(9)}^{3}}=\dfrac{4}{3}\pi (729)=972\pi $
The volume of a cylinder is given as $ {{V}_{C}}=\pi {{r}^{2}}l $ , where r is the radius of the cylinder and l is its length (or height).
It is given that the length of the wire is 108m. This means that $ l=108\;cm $ .
$ \Rightarrow {{V}_{C}}=\pi {{r}^{2}}l=108\pi {{r}^{2}} $ .
But, $ {{V}_{S}}={{V}_{C}} $ .
$ \Rightarrow 972\pi =108\pi {{r}^{2}} $
$ \Rightarrow {{r}^{2}}=9 $
$ \Rightarrow r=3\;cm $ .
And $ d=2r=2(3)=6\;cm $
This means that the diameter of the cross section of the wire is equal to 6 cm.
So, the correct answer is “6 cm”.
Note: When an iron is melted and converted into some other shape, its mass remains and its density also remains the same. The mass, density and volume of a substance are related as $ \rho =\dfrac{m}{V} $ , $ \rho $ is the density, m is the mass and V is the volume of the substance.
For this we can write $ V=\dfrac{m}{\rho } $ .
Therefore, if the mass and density of iron remains the same, then its volume will also remain the same.
The volume of a cylinder is given as $ {{V}_{C}}=\pi {{r}^{2}}l $ , where r is the radius of the cylinder and l is its length (or height).
Formula used:
$ {{V}_{S}}=\dfrac{4}{3}\pi {{r}^{3}} $
$ r=\dfrac{d}{2} $
$ {{V}_{C}}=\pi {{r}^{2}}l $
Complete step-by-step answer:
It is given that an iron sphere is melted and is converted into a long wire of uniform cross section. We are supposed to find the diameter of the wire.
When we say that the melted iron is made into a long wire of uniform cross section, the shape of the wire is a simple cylinder.
When the iron sphere is converted into a cylinder, though its shape and size changes but its volume will remain the same. This means that the volume of the sphere and the long wire (cylinder) are equal.
The volume of a sphere is given as $ {{V}_{S}}=\dfrac{4}{3}\pi {{r}^{3}} $ …. (i),
where r is the radius of the sphere.
It is given that the diameter of the sphere is 18 cm. The relation between radius (r) and diameter (d) is $ r=\dfrac{d}{2} $
$ \Rightarrow r=\dfrac{18}{2}=9\;cm $ .
Substitute the value of r in (i).
$ \Rightarrow {{V}_{S}}=\dfrac{4}{3}\pi {{(9)}^{3}}=\dfrac{4}{3}\pi (729)=972\pi $
The volume of a cylinder is given as $ {{V}_{C}}=\pi {{r}^{2}}l $ , where r is the radius of the cylinder and l is its length (or height).
It is given that the length of the wire is 108m. This means that $ l=108\;cm $ .
$ \Rightarrow {{V}_{C}}=\pi {{r}^{2}}l=108\pi {{r}^{2}} $ .
But, $ {{V}_{S}}={{V}_{C}} $ .
$ \Rightarrow 972\pi =108\pi {{r}^{2}} $
$ \Rightarrow {{r}^{2}}=9 $
$ \Rightarrow r=3\;cm $ .
And $ d=2r=2(3)=6\;cm $
This means that the diameter of the cross section of the wire is equal to 6 cm.
So, the correct answer is “6 cm”.
Note: When an iron is melted and converted into some other shape, its mass remains and its density also remains the same. The mass, density and volume of a substance are related as $ \rho =\dfrac{m}{V} $ , $ \rho $ is the density, m is the mass and V is the volume of the substance.
For this we can write $ V=\dfrac{m}{\rho } $ .
Therefore, if the mass and density of iron remains the same, then its volume will also remain the same.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?

