
The diagram below shows the horizontal forces on a $20.0\,kg$ mass. The forces are constant in time. If the mass starts from rest, how far has it traveled in the horizontal direction after $3.00\,s$ ?
A. 4.5 m
B. 9 m
C. 6.75 m
D. 22.5 m

Answer
418.5k+ views
Hint: The use of force. A push or pull on an item can be characterised as a force. They can be caused by gravity, magnetism, or any other phenomenon that causes a mass to accelerate. As a result, we solve the issue using the second equation of motion.
Formula used:
\[s = ut + \dfrac{1}{2}a{t^2}\]
Here $S$ = displacement, $U$ = initial velocity, $T$ = time and $A$ = acceleration.
Complete step by step answer:
Equations of motion are physics equations that describe a physical system's behaviour in terms of its motion as a function of time. The equations of motion, more particularly, explain the behaviour of a physical system as a collection of mathematical functions expressed in terms of dynamic variables.
In physics, equations of motion are equations that describe a physical system's behaviour in terms of its motion as a function of time. Components such as displacement(s), velocity (initial and final), time(t), and acceleration may be calculated using three equations of motion (a).
\[s = ut + \dfrac{1}{2}a{t^2}\] is the second equation of motion
Hence given in the question
${F_{net}} = 100 - 70\,N$
$\Rightarrow {F_{net}} = 30\,N$
We know that $F = ma$
Here $m = 20\,kg$
Hence
$a = \dfrac{F}{m}$
$\Rightarrow a = \dfrac{{30}}{{20}}$
$\Rightarrow a = 1.5\,m{s^{ - 2}}$
Substituting them in equations of motion we get
\[s = ut + \dfrac{1}{2}a{t^2}\]
Initial velocity becomes zero.
Hence, \[s = \dfrac{1}{2}a{t^2}\]
$s = \dfrac{1}{2} \times 1.5 \times {3^2}$
\[ \therefore {\text{s }} = {\text{ }}6.75{\text{ }}m\]
Hence option C is correct.
Note:The horizontal pressures are equivalent in magnitude and direction, but they oppose each other. The horizontal resultant force is 0 since they are balanced. This means there is no horizontal acceleration and only a steady horizontal speed. The vertical pressures are equivalent in magnitude and direction, but they oppose each other.
Formula used:
\[s = ut + \dfrac{1}{2}a{t^2}\]
Here $S$ = displacement, $U$ = initial velocity, $T$ = time and $A$ = acceleration.
Complete step by step answer:
Equations of motion are physics equations that describe a physical system's behaviour in terms of its motion as a function of time. The equations of motion, more particularly, explain the behaviour of a physical system as a collection of mathematical functions expressed in terms of dynamic variables.
In physics, equations of motion are equations that describe a physical system's behaviour in terms of its motion as a function of time. Components such as displacement(s), velocity (initial and final), time(t), and acceleration may be calculated using three equations of motion (a).
\[s = ut + \dfrac{1}{2}a{t^2}\] is the second equation of motion
Hence given in the question
${F_{net}} = 100 - 70\,N$
$\Rightarrow {F_{net}} = 30\,N$
We know that $F = ma$
Here $m = 20\,kg$
Hence
$a = \dfrac{F}{m}$
$\Rightarrow a = \dfrac{{30}}{{20}}$
$\Rightarrow a = 1.5\,m{s^{ - 2}}$
Substituting them in equations of motion we get
\[s = ut + \dfrac{1}{2}a{t^2}\]
Initial velocity becomes zero.
Hence, \[s = \dfrac{1}{2}a{t^2}\]
$s = \dfrac{1}{2} \times 1.5 \times {3^2}$
\[ \therefore {\text{s }} = {\text{ }}6.75{\text{ }}m\]
Hence option C is correct.
Note:The horizontal pressures are equivalent in magnitude and direction, but they oppose each other. The horizontal resultant force is 0 since they are balanced. This means there is no horizontal acceleration and only a steady horizontal speed. The vertical pressures are equivalent in magnitude and direction, but they oppose each other.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
